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Abstract

This paper shows how the common practice of calculating the standard

errors of demand estimators can be inaccurate when using Hausman instru-

ments. The typical method ignores a correlation pattern arising from essential

endogeneity of Hausman instruments, usually underestimating the true vari-

ance of the estimators as a consequence. I explore methods to robustly estimate

the variance of the demand estimator for some popular classes of Hausman

instruments, including region-based and adjacency-based instruments. Monte

Carlo simulations are conducted to evaluate their performances. The results

suggest using moderately scoped Hausman instruments and correlation-robust

variance estimators, to reduce the true variance of the demand estimator and

to accurately estimate the variance.
∗I thank my advisors, Philip Haile, Steven Berry, and Yuichi Kitamura, as well as Jonas Lieber

and Suk Joon Son for their advice and helpful discussions for this paper.
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1 Introduction

Demand models typically require instrumental variables (IVs) for identification and

estimation. Several types of instrumental variables have been discussed in the

literature, particularly regarding their validity as providing exogenous variations.

In contrast, little has been studied in terms of how different classes of instruments

may affect the statistical properties of estimators in demand models. In this paper,

I examine the impact of the construction of so-called Hausman instruments on

the variance of BLP-style estimators. I also identify inaccuracies in conventional

methods of variance estimation and propose correct approaches accordingly.

Designed to act as a proxy for exogenous cost shifters, a Hausman instrument

is formed as a function of the prices of the same product in other markets. Given

that it is a function of equilibrium prices, the Hausman instrument is essentially

endogenous in the model. However, the demand shocks in a given market do not

affect the equilibrium prices in other markets, provided that demand shocks are

independent across markets (although this assumption is often subject to debate

in empirical work). Because of this, by construction, the Hausman instrument is

uncorrelated with the demand shocks within the market, thus behaving as if it were

exogenous, and making the identifying moment condition hold.

This successful separation between demand shocks and endogenous prices, how-

ever, breaks down when examining the statistical properties of the demand estimator.

The variance of the estimator depends on the variability of the moment condition

in the sample, with increased sample moment variation leading to greater estimator

variance. It is essential, therefore, to correctly gauge the variability of 𝑔𝑡 , a symbol

we shall use later to denote deviations of the sample moment from zero.
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The common method is to calculate the sample variance of 𝑔𝑡 assuming that

they are mutually uncorrelated across markets. I show, to the contrary, that these

terms can be correlated; when examining the correlation between two markets,

say 𝑡 and 𝑡′, the demand shocks in 𝑡 now meet the prices in the same market 𝑡.

This is because these prices in 𝑡 appear in market 𝑡′ as a Hausman instrument.

Identifying such correlation patterns is a crucial step in restoring valid inference.

The pattern is directly related to the structure of the Hausman instrument in use,

whose construction is determined by the researcher, and thus differs from case to

case.

I demonstrate how to detect the correlation patterns in general cases and, for

some common classes of Hausman instruments, how to obtain the correct standard

error in practice. Specifically, for region-based instruments—where markets are

grouped into disjoint collections termed regions—I recommend calculating the

standard errors clustered at the region level. For instruments constructed from

adjacent markets, I propose to employ variance estimation techniques from time-

series or spatial econometrics, such as those that are robust against autocorrelation

or cross-sectional dependence.

I also conduct Monte Carlo simulation exercises to evaluate the performance of

the proposed methods. The results suggest that these methods yield more accurate

standard errors than conventional approaches that do not account for correlation. In

the case of region-based instruments, this relative accuracy remains even in scenarios

where the clusters are misspecified as smaller than the actual regions within which

the cost shifters are constant.

A caveat is that certain conditions need to be met in order to ensure the consis-
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tency of those robust variance estimators. In the context of region-based instruments,

the number of clusters must be large. When the instrument is a function of prices

across a very large number of markets, such as a national-level Hausman instrument,

the number of clusters becomes small by construction. This leads the clustered stan-

dard error to perform worse than the conventional standard error without correlation

correction. However, Hausman instruments with such broad scopes are likely to have

high variance. It is therefore recommended to construct more localized Hausman

instruments, if possible, and employ correlation-robust variance estimators.

The paper is organized as follows. Section 2 introduces the demand model

and the BLP-estimator that are of interest in this paper, and then discusses how

the conventional calculation may incorrectly evaluate the estimation accuracy when

Hausman instruments are used. Section 3 shows how to obtain the correct standard

errors in the aforementioned popular choices of Hausman instruments. Section 4

conducts Monte Carlo simulations to examine the performance of the methods I

propose.

2 Hausman IVs and incorrect standard errors

2.1 Discrete choice demand and Hausman instruments

Let consumer 𝑖’s conditional indirect utility from good 𝑗 = 1, . . . , 𝐽 in market

𝑡 = 1, . . . , 𝑇 be1

𝑢𝑖 𝑗 𝑡 = 𝑥′𝑗 𝑡𝛽 − 𝛼𝑝 𝑗 𝑡 + b 𝑗 𝑡 + `𝑖 𝑗 𝑡 + 𝜖𝑖 𝑗 𝑡 .

1For simplicity, I assume that the number of inside goods 𝐽 is the same across markets.
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The utility depends on the observed characteristics 𝑥 𝑗 𝑡 , the price 𝑝 𝑗 𝑡 , and the unob-

served (to the researcher) product-level heterogeneity b 𝑗 𝑡 . The individual–product-

level heterogeneity is represented by `𝑖 𝑗 𝑡 and 𝜖𝑖 𝑗 𝑡 , where `𝑖 𝑗 𝑡 may be parameter-

ized by 𝛾 and may depend on product characteristics, demographic variables, or

individual-specific tastes. The idiosyncratic preference shock 𝜖𝑖 𝑗 𝑡 is usually as-

sumed to follow type I extreme value distribution. The outside option is represented

by 𝑗 = 0 and delivers utility 𝑢𝑖0𝑡 = 𝜖𝑖0𝑡 .

The estimator by Berry, Levinsohn, and Pakes (1995, hereafter BLP)—based on

the observation by Berry (1994) that the discrete choice model can be estimated by a

moment condition—utilizes instrumental variables to address endogeneity caused by

the unobserved demand shock b 𝑗 𝑡 . Specifically, the (market-level) BLP estimator is a

generalized method of moments (GMM) estimator based on the moment condition2

E[b 𝑗 𝑡 |𝑧 𝑗 𝑡] = 0,

where 𝑧 𝑗 𝑡 is a vector of instrumental variables, which are exogenous to the demand

shock b 𝑗 𝑡 while being relevant to the variations in market shares and prices.

One particular class of instrumental variable of interest in this paper is the so-

called Hausman instruments (Hausman, 1996; Nevo, 2000).3 Designed as a proxy

for production cost shifters, a Hausman instrument is a function, usually the average,

of the prices of the same product in other markets. The idea is that cost shifters of

𝑗 may be common (or correlated) in several markets in which 𝑗 is sold. Then the

2In a precise sense, the BLP estimator is a method of simulated moments, as the computation
of the moment function usually involves numerical integrations with respect to `𝑖 𝑗𝑡 . In this paper,
however, I ignore the additional estimation error stemming from the numerical integrations.

3Berry and Haile (2021) discuss various classes of instrumental variables that have been proposed
in the literature.
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common cost shifters may affect the prices of 𝑗 in those markets. Therefore, even

when cost shifters are not observed by the researcher, the prices of 𝑗 in other related

markets may pick up the variation in the common cost shifters of 𝑗 , and hence serve

as a relevant instrument.

To pin down the idea, let the production cost be written as

𝑐 𝑗 𝑡 = 𝑐 𝑗 𝑡 (𝑤 𝑗 𝑡 , 𝜔 𝑗 𝑡)

where 𝑐 𝑗 𝑡 is the marginal cost of the product 𝑗 in market 𝑡, 𝑤 𝑗 𝑡 is exogenous cost

shifters, and 𝜔 𝑗 𝑡 is idiosyncratic cost shocks.

The cost shifter 𝑤 𝑗 𝑡 , if observed, would serve as an instrumental variable under

the exogeneity assumption E[b 𝑗 𝑡 |𝑤 𝑗 𝑡] = 0, i.e., the demand shock is mean inde-

pendent of the cost shifter. Suppose otherwise that 𝑤 𝑗 𝑡 is not observed by the

researcher, yet he finds another market 𝑡′ such that 𝑤 𝑗 𝑡′ is closely correlated (or

coincides) with 𝑤 𝑗 𝑡 . Then the researcher can use 𝑝 𝑗 𝑡′ as a proxy for 𝑤 𝑗 𝑡 , since 𝑝 𝑗 𝑡′

is determined as a function of 𝑤 𝑗 𝑡′ in equilibrium and the latter is in turn correlated

with 𝑤 𝑗 𝑡 . Of course, for identification purposes, the instrument must satisfy mean

independence, E[b 𝑗 𝑡 |𝑝 𝑗 𝑡′] = 0, which in general requires demand shocks b 𝑗 𝑡 and

b 𝑗 𝑡′ to be independent. I formally introduce this as Assumption 1 below.

2.2 The BLP estimator

Now I show that the commonly calculated standard errors of the BLP estimator can

be inaccurate when Hausman instruments are employed, even when the identifying

condition is satisfied. To do so, I first describe the estimator and how its standard
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errors are usually calculated, and then identify the issue arising from this practice.

From now on, consider the following unconditional moment condition

E[𝑧 𝑗 𝑡b 𝑗 𝑡 (\0)] = 0,

which is obtained by taking 𝑧 𝑗 𝑡 as some function of the original set of instrumental

variables and renaming it.4 The structural error b 𝑗 𝑡 is written as a function of the

parameter \ = (𝛼, 𝛽, 𝛾) given the data (including market shares 𝑠𝑡 , prices 𝑝𝑡 , and

product characteristics 𝑥𝑡 in market 𝑡), following Berry (1994), or Berry, Gandhi,

and Haile (2013) for more general cases. Identification requires the moment to be

zero at (and only at) the true parameter value \0.

With the moment function 𝑔 𝑗 𝑡 (\) = 𝑧 𝑗 𝑡b 𝑗 𝑡 (\), the BLP estimator \̂ minimizes

the criterion function:

\̂ = arg min
\

𝑔𝑛 (\)′𝐴𝑛𝑔𝑛 (\),

where 𝑛 = 𝐽𝑇 denotes the total number of products across markets, 𝑔𝑛 (\) =

𝑛−1 ∑
𝑗 𝑡 𝑔 𝑗 𝑡 (\) = 𝑛−1 ∑

𝑗 𝑡 𝑧 𝑗 𝑡b 𝑗 𝑡 (\), and 𝐴𝑛 is a positive definite weighting matrix.5

Under standard regularity conditions, the asymptotic distribution of the estimator

is
√
𝑛(\̂ − \0)

𝑑→ 𝑁 (0, 𝑉) as 𝑛 → ∞, with the asymptotic variance 𝑉 given by

𝑉 = (𝐺′𝐴𝐺)−1𝐺′𝐴Ω𝐴𝐺 (𝐺′𝐴𝐺)−1

4A common choice is to take approximate optimal instruments as suggested by Berry, Levinsohn,
and Pakes (1995) and Conlon and Gortmaker (2020), or to construct differentiation instruments by
Gandhi and Houde (2019).

5For more details and recommended practices, see Conlon and Gortmaker (2020).
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where

𝐺 = E

[
𝜕

𝜕\′
𝑔 𝑗 𝑡 (\0)

]
= E

[
𝑧 𝑗 𝑡

(
𝜕

𝜕\′
b 𝑗 𝑡 (\0)

)]
,

𝐴𝑛

𝑝
→ 𝐴 as 𝑛 → ∞, and Ω is the asymptotic variance of

1
√
𝑛

∑︁
𝑗 𝑡

𝑔 𝑗 𝑡

where 𝑔 𝑗 𝑡 = 𝑔 𝑗 𝑡 (\0) = 𝑧 𝑗 𝑡b 𝑗 𝑡 . The correct estimation of Ω (and hence that of 𝑉) is

the main objective of this paper, in the context of demand estimation with Hausman

instruments.

2.3 The overlooked dependence

The common practice of calculating Ω is to assume implicitly that 𝑔 𝑗 𝑡 are uncorre-

lated across 𝑡 (while often allowing for heteroscedasticity). Under this assumption,

we have Ω = E[𝑔 𝑗 𝑡𝑔
′
𝑗 𝑡
] by the central limit theorem with zero correlation, leading to

variance estimators that are not robust against correlation between 𝑔 𝑗 𝑡s across 𝑡. One

such estimator (that is still robust against heteroscedasticity of the demand shock

b 𝑗 𝑡) is 𝑛−1 ∑
𝑗 𝑡 b̂

2
𝑗 𝑡
𝑧 𝑗 𝑡𝑧

′
𝑗 𝑡

, where b̂ 𝑗 𝑡 = b 𝑗 𝑡 (\̂). This is the default variance estimator

in PyBLP, a widely used python package, by Conlon and Gortmaker (2020).

When some elements of 𝑧 𝑗 𝑡 are Hausman instruments, however, the mutual

independence assumption of 𝑔 𝑗 𝑡 with respect to 𝑡 is violated in general. To see this,

suppose the price in market 𝑡′ is used as an instrument for market 𝑡 and vice versa;6

6Although this is a common practice in empirical work involving Hausman instruments, some
settings might not follow such a reciprocal relationship, in which case the correlation phenomenon
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i.e., 𝑧 𝑗 𝑡 = 𝑝 𝑗 𝑡′ and 𝑧 𝑗 𝑡′ = 𝑝 𝑗 𝑡 .7 Then we have

E[𝑔 𝑗 𝑡𝑔 𝑗 𝑡′] = E[(𝑝 𝑗 𝑡′b 𝑗 𝑡) (𝑝 𝑗 𝑡b 𝑗 𝑡′)] = E[(𝑝 𝑗 𝑡b 𝑗 𝑡) (𝑝 𝑗 𝑡′b 𝑗 𝑡′)],

which is nonzero in general, as an example in Section A shows. This happens

because the price 𝑝 𝑗 𝑡 of product 𝑗 and its demand shock b 𝑗 𝑡 are correlated, which

is in fact why we required instrumental variables in the first place.8 As 𝑝 𝑗 𝑡 and b 𝑗 𝑡

are typically positively correlated, the correlation tends to be positive, and ignoring

this would underestimate the true variance Ω.

Before discussing various aspects of this phenomenon, here I lay down assump-

tions on exogenous variables and structural shocks, which I maintain for the rest of

the paper.

Assumption 1. (a) Structural errors (b𝑡 , 𝜔𝑡) are independent across markets con-

ditional on exogenous variables (𝑥, 𝑤) = (𝑥11, . . . , 𝑥𝐽𝑇 , 𝑤11, . . . , 𝑤𝐽𝑇 ).

(b) E[b 𝑗 𝑡 |𝑥, 𝑤] = 0 almost surely.

The first item ensures econometric exogeneity of the Hausman instrument, as

demonstrated momentarily. Alternatively, we may consider a set of assumptions

in terms of the cost 𝑐 itself without distinguishing between 𝑤 and 𝜔, particularly

given that 𝑤 and 𝜔 are both unobservable when a researcher resorts to Hausman

does not occur. See below for this.
7The vector of instruments 𝑧 generally contains other elements such as included instruments and

other types of instruments, but I suppress them for notational convenience. The discussion for the
rest of this section should be interpreted as pertaining to a specific element, namely the Hausman
instrument, among the whole vector of instrumental variables.

8By the same logic, should we choose to use product shares in other markets as an instrumental
variable, we would again have nonzero correlation. This is because the equilibrium shares are
endogenous in their respective markets.
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instruments; i.e., we may assume b𝑡 ⊥⊥ b𝑡′ |𝑥, 𝑐 and E[b 𝑗 𝑡 |𝑥, 𝑐] = 0. However,

keeping 𝜔 separate from 𝑤 is more general in that it allows some part of the cost to

be correlated with the demand shock.

Instrument exogeneity/relevance does not prevent nonzero correlation. The

nonzero correlation occurs even though econometric exogeneity of the Hausman

instrument is maintained. Under Assumption 1, the moment condition holds as

E𝑔 𝑗 𝑡 = E[𝑝 𝑗 𝑡′b 𝑗 𝑡] = E[𝑝 𝑗 𝑡′E[b 𝑗 𝑡 |𝑝𝑡′ , 𝑥, 𝑤]] = E[𝑝 𝑗 𝑡′ E[b 𝑗 𝑡 |𝑥, 𝑤]︸       ︷︷       ︸
=0

] = 0,

where the third equality holds because 𝑝𝑡′ , once conditioned on exogenous variables,

is a function of (b𝑡′ , 𝜔𝑡′), which are conditionally independent of b 𝑗 𝑡 . The display

guarantees the instrument validity of 𝑝 𝑗 𝑡′ for b 𝑗 𝑡 as needed. However, under the

same set of assumptions, we have

E[𝑔 𝑗 𝑡𝑔 𝑗 𝑡′] = E[E[𝑝 𝑗 𝑡b 𝑗 𝑡 |𝑥, 𝑤]︸            ︷︷            ︸
≠0

E[𝑝 𝑗 𝑡′b 𝑗 𝑡′ |𝑥, 𝑤]︸             ︷︷             ︸
≠0

] ≠ 0,

in general, resulting in a nonzero correlation. Here, the first equality holds again

because the structural errors are conditionally independent across markets. Applying

the usual modeling implication that E[𝑝 𝑗 𝑡b 𝑗 𝑡 |𝑥, 𝑤] > 0 almost surely, we can further

say that the sequence of 𝑔 𝑗 𝑡 exhibits positive correlation across 𝑡 in this case.

The nonzero correlation is not an implication of the common/correlated cost

shifter assumption either, which is motivated by the relevance requirement of Haus-

man instruments. This can be seen from the fact that whether 𝑤𝑡 is correlated with
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𝑤𝑡′ or not plays no role in the derivation above, since E[𝑝 𝑗 𝑡b 𝑗 𝑡 |𝑥, 𝑤] is already

conditioned on 𝑤.

Construction of Hausman instrument determines the correlation pattern. In

the above exposition, I constructed the Hausman instrument in a reciprocal way; 𝑝𝑡′

serves as an instrument for market 𝑡 and 𝑝𝑡 as an instrument for market 𝑡′. While

such a reciprocal construction of Hausman instruments is common in empirical

studies, we can consider otherwise. For example, suppose, for each 𝑡, a researcher

lets 𝑝 𝑗 ,𝑡−1 instrument for market 𝑡, and not vice versa. Then we instead have

E[𝑔 𝑗 𝑡𝑔 𝑗 ,𝑡−1] = E[E[𝑝 𝑗 ,𝑡−1b 𝑗 ,𝑡−1 |𝑥, 𝑤]E[𝑝 𝑗 ,𝑡−2 |𝑥, 𝑤] E[b 𝑗 𝑡 |𝑥, 𝑤]︸       ︷︷       ︸
=0

] = 0,

and similarly for other correlations such as E[𝑔 𝑗 𝑡𝑔 𝑗 ,𝑡−2] = 0.

In the same way, the correlation problem does not arise when prices in 𝑡′ are

used as an instrument for market 𝑡 while 𝑡′ itself is not included in the sample.

For example, suppose a researcher has data (including prices, market shares, and

product characteristics) for the capital of each state, while for other cities he only

observes prices. For each capital city he can build an instrumental variable using

the prices in other cities in the same state, and then calculate the sample moment

function 𝑔𝑛 (\) using only the capital cities. In this scenario, 𝑔 𝑗 𝑡s are uncorrelated

under the assumption that demand shocks are independent across states conditional

on exogenous variables, thus eliminating the correlation problem.

Note that such patterns of correlation are determined by the researcher’s own

decision on which markets enter the Hausman instrument for another market, not

11



by the true correlation among the cost shifters across markets. Therefore one needs

to examine these patterns based on his own choice, on a case-by-case basis, to

accurately estimate Ω. In the next section, I explore a few common and popular

cases, namely region-based and adjacency-based Hausman instruments. In more

general cases, researchers can follow the preceding demonstration to identify the

correlation pattern and then adapt robust variance estimators accordingly.

Other instruments do not introduce the hidden correlation. If Hausman in-

struments that utilize prices in nearby markets introduce correlation, then how about

so-called BLP instruments that use the exogenous characteristics of closely related

products, or Waldfogel instruments that rely on the exogenous characteristics (e.g.,

consumer demographics) of nearby markets? What if a researcher directly observes

the cost shifters and employ them as instruments? It turns out that these instruments

do not face the hidden correlation phenomenon exhibited above, because they are

essentially exogenous. Still, one might need to account for correlations between

demand shocks, which is usually modeled in an explicit way and therefore easier to

detect.

The BLP instruments use exogenous variables 𝑥𝑡 (often within the same market)

as their ingredients. Reflecting this, now suppose 𝑧 𝑗 𝑡 = 𝑥 𝑗 ′𝑡 and 𝑧 𝑗 ′𝑡 = 𝑥 𝑗 𝑡 . Then we

have

E[𝑔 𝑗 𝑡𝑔
′
𝑗 ′𝑡] = E[(𝑥 𝑗 ′𝑡b 𝑗 𝑡) (𝑥 𝑗 𝑡b 𝑗 ′𝑡)′] = E

[
𝑥 𝑗 𝑡𝑥

′
𝑗 ′𝑡E[b 𝑗 𝑡b 𝑗 ′𝑡 |𝑥]

]
,

E[𝑔 𝑗 𝑡𝑔
′
𝑗 𝑡′] = E[(𝑥 𝑗 ′𝑡b 𝑗 𝑡) (𝑥 𝑗 ′𝑡′b 𝑗 𝑡′)′] = E

[
𝑥 𝑗 ′𝑡𝑥

′
𝑗 ′𝑡′E[b 𝑗 𝑡b 𝑗 𝑡′ |𝑥]

]
.

Whether these expressions evaluate to zero depends on the assumption on how
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demand shocks are (conditionally) dependent on each other. If the researcher is

willing to assume that demand shocks are independent, then the correlations are

zero. If, otherwise, he believes that demand shocks within a market are correlated,

or that the demand shocks of a product persist across markets, then the corresponding

correlations between 𝑔 𝑗 𝑡s are nonzero in general. Such correlation patterns among

𝑔 𝑗 𝑡 can be directly deduced, like this, from the assumed correlation among b 𝑗 𝑡s,

making it better understood in the literature; in empirical studies, researchers often

report standard errors clustered at market-level or product-level, accounting for

their assumed correlation between demand shocks. This correlation between 𝑔 𝑗 𝑡s,

however, is distinct from the hidden pattern I have revealed as above, in that it is

a direct implication of the true demand shocks, rather than an artifact of how an

instrument is constructed by the researcher.

We can apply the same logic to Waldfogel instruments. Letting 𝑥𝑡 incorporate

relevant exogenous variables, such as consumer demographics, we can write the

Waldfogel instrument for product 𝑗 in market 𝑡 as 𝑧 𝑗 𝑡 = 𝑥𝑡′ . Then

E[𝑔 𝑗 𝑡𝑔
′
𝑗 ′𝑡] = E[(𝑥𝑡′b 𝑗 𝑡) (𝑥𝑡′b 𝑗 ′𝑡)′] = E

[
𝑥𝑡′𝑥

′
𝑡′E[b 𝑗 𝑡b 𝑗 ′𝑡 |𝑥]

]
,

E[𝑔 𝑗 𝑡𝑔
′
𝑗 𝑡′] = E[(𝑥𝑡′b 𝑗 𝑡) (𝑥𝑡b 𝑗 𝑡′)′] = E

[
𝑥𝑡′𝑥

′
𝑡E[b 𝑗 𝑡b 𝑗 𝑡′ |𝑥]

]
,

and whether they are zero or not depends on the assumptions on the correlations

between demand shocks. Likewise, if the researcher has an access to the exogenous
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cost shifters, then a similar algebra leads us to

E[𝑔 𝑗 𝑡𝑔
′
𝑗 ′𝑡] = E[(𝑤 𝑗 𝑡b 𝑗 𝑡) (𝑤 𝑗 ′𝑡b 𝑗 ′𝑡)′] = E

[
𝑤 𝑗 𝑡𝑤

′
𝑗 ′𝑡E[b 𝑗 𝑡b 𝑗 ′𝑡 |𝑤]

]
,

E[𝑔 𝑗 𝑡𝑔
′
𝑗 𝑡′] = E[(𝑤 𝑗 𝑡b 𝑗 𝑡) (𝑤 𝑗 𝑡′b 𝑗 𝑡′)′] = E

[
𝑤 𝑗 𝑡𝑤

′
𝑗 𝑡′E[b 𝑗 𝑡b 𝑗 𝑡′ |𝑤]

]
.

The key distinction between Hausman instruments and other types of instrumen-

tal variables—such as BLP instruments, Waldfogel instruments, and cost shifters—

lies in their endogeneity within the demand model. Hausman instruments, derived

from equilibrium prices, are intrinsically endogenous (although they are treated as

exogenous for econometric purposes). In contrast, other instruments are exogenous

to the model. Consequently, analyzing the correlation between instrumental vari-

ables and demand shocks was required for Hausman instruments, but not for the

other cases.

3 Correct standard errors

Fortunately, correcting the standard errors becomes straightforward once we identify

the dependence structure as in the previous section, since relevant econometric

tools are readily available. In this section, I propose the correct calculation of

standard errors under two popular classes of Hausman instruments: region-based

instruments and adjacency-based instruments. A takeaway is to consider robust

variance estimators that account for the dependence pattern, which relies on the

particular choice of Hausman instrument.
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3.1 Clustered markets

In some studies the Hausman instrument is constructed based on regions, where

each region consists of multiple markets. For each market, the researcher constructs

a Hausman instrument as a function of the prices in the other markets belonging

to the same region. One extreme case is to consider the entire set of markets as a

single region: e.g., the Hausman instrument at the national level. For example, Nevo

(2000), who defines a city–quarter pair as a market, mentions both approaches—

constructing a Hausman instrument within region–quarter clusters or using the prices

of the same product across all cities and quarters (except for the same city–quarter

pair)—although only the former is used.

Figure 1a illustrates one example, where there are three regions, each composed

of five cities. A faint line connecting two markets indicates that one market is used

for constructing the Hausman instrument for the other market, and vice versa. For

market 𝑡, indicated by a hollow dot, the four markets connected by solid lines in the

same region are incorporated into the instrument for this market.

In such cases, the correlation of 𝑔 𝑗 𝑡 shows a clustered pattern. To see this, let 𝑡

denote markets and 𝑟 denote regions which are disjoint sets of markets. For market

𝑡, let 𝑟 (𝑡) denote the region that 𝑡 belongs to. The Hausman instrument 𝑧 𝑗 𝑡 for

product 𝑗 in market 𝑡 is then constructed as a function of 𝑝 𝑗 𝑠 with 𝑠 ∈ 𝑟 (𝑡) \ {𝑡}.

Then, for 𝑡 and 𝑡′ with 𝑟 (𝑡) = 𝑟 (𝑡′), we have

E[𝑔 𝑗 𝑡𝑔 𝑗 𝑡′] = E[(𝑧 𝑗 𝑡b 𝑗 𝑡) (𝑧 𝑗 𝑡′b 𝑗 𝑡′)] = E[(𝑧 𝑗 𝑡′b 𝑗 𝑡) (𝑧 𝑗 𝑡b 𝑗 𝑡′)] ≠ 0

in general, as demonstrated in the previous section, since 𝑧 𝑗 𝑡′ depends on 𝑝 𝑗 𝑡 which

15



𝑡

(a) Clustered markets

𝑡 − 1 𝑡 𝑡 + 1

(b) Markets on a line

𝑡

(c) Markets on a lattice

Figure 1: Graphical illustration of markets

Notes: A dot represents a market. A line connecting two markets indicates that one market is
included in the Hausman instrument for the other market and vice versa. The reference market 𝑡 is
represented by a hollow dot. The Hausman instrument for 𝑡 is constructed using the markets that are
connected to 𝑡 by solid lines.
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in turn depends on b 𝑗 𝑡 in equilibrium, and similarly for 𝑧 𝑗 𝑡 and 𝑝 𝑗 𝑡′ . On the other

hand, if 𝑡 and 𝑡′ are such that 𝑟 (𝑡) ≠ 𝑟 (𝑡′), then 𝑔 𝑗 𝑡 = 𝑧 𝑗 𝑡b 𝑗 𝑡 is a function of

(b𝑠, 𝜔𝑠, 𝑥𝑠, 𝑤𝑠)𝑠∈𝑟 (𝑡) whereas 𝑔 𝑗 𝑡′ is a function of (b𝑠, 𝜔𝑠, 𝑥𝑠, 𝑤𝑠)𝑠∈𝑟 (𝑡′) , so that 𝑔 𝑗 𝑡

and 𝑔 𝑗 𝑡′ become independent conditional on exogenous variables:

E[𝑔 𝑗 𝑡𝑔 𝑗 𝑡′] = E[E[𝑔 𝑗 𝑡𝑔 𝑗 𝑡′ |𝑥, 𝑤]] = E[E[𝑔 𝑗 𝑡 |𝑥, 𝑤]E[𝑔 𝑗 𝑡′ |𝑥, 𝑤]] = 0.

Based on this, we can calculate the clustered standard error as follows, by treating

each region–product pair as a cluster:

Ω̂ =
1
𝑛

∑︁
𝑗 ,𝑟

𝑔 𝑗𝑟𝑔
′
𝑗𝑟 (1)

where 𝑔 𝑗𝑟 =
∑

𝑡∈𝑟 b̂ 𝑗 𝑡𝑧 𝑗 𝑡 . This clustering scheme is valid under the assumption that

demand shocks are (conditionally) independent across products within a market.

As this might be restrictive, we may instead cluster at the region level, considering

products within a region as belonging to the same cluster, to allow for correlation

within each market:9

Ω̂ =
1
𝑛

∑︁
𝑟

𝑔𝑟𝑔
′
𝑟 (2)

where 𝑔𝑟 =
∑

𝑗

∑
𝑡∈𝑟 b̂ 𝑗 𝑡𝑧 𝑗 𝑡 . In either case, it is convenient to implement in practice

since clustered standard errors are built in as an option in many statistical packages

including PyBLP.

9In fact, this unnecessarily allows for other correlations, say, between 𝑔 𝑗𝑡 and 𝑔 𝑗′𝑡 ′ with 𝑟 (𝑡) =
𝑟 (𝑡′).
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An important consideration, however, is the number of clusters. For the sake

of clarity in the following explanation, assume that each region contains an equal

number of markets, denoted as |𝑟 |, and that each region–product pair is treated as

a cluster for constructing the Hausman instrument. Consequently, the number of

observations in each cluster, which we refer to as the scope of the instrument, equals

|𝑟 |. Then given the total number of products across all markets 𝑛(≡ 𝐽 × 𝑇), the

number of clusters equals 𝑛/|𝑟 |.

Given the set of markets, a researcher decides on the scope of the Hausman in-

strument, and consequently, the number of clusters. Econometric theory prescribes

that the number of clusters should be large to ensure consistency of the clustered

variance estimator Ω̂. This requirement presents a practical trade-off; on one hand,

the estimation of the true variance becomes more accurate when the number of

clusters is large. Also, an excessively broad scope (and thus having too few clusters)

may weaken the instrument, by including irrelevant markets and by generating little

variation in the instrument. On the other hand, relying on too few markets as proxies

for production cost may also weaken the instrument. As demonstrated by Monte

Carlo simulations in the next section, I recommend finding moderately sized regions

in which cost shifters are believed to be common—to reduce the true variance—and

applying clustered standard error—to accurately estimate the true variance.

3.2 Adjacent markets

Another possibility is to build Hausman instruments based on adjacent or nearby

markets, rather than partitioned regions. For example, Guevara and Ben-Akiva

(2006) use “observed average prices of the same product in adjacent zones,” al-
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though their estimation method is different from BLP. In such cases, 𝑔 𝑗 𝑡s exhibit

serial/spatial correlation, calling for variance estimation techniques from time series,

spatial, or network econometrics.

Suppose, for simplicity, markets 𝑡 = 1, . . . , 𝑇 are placed on a line as in Figure 1b.

For each 𝑡, the instrumental variable is based on the prices of the same product in the

two adjacent markets (or one if the market of interest is at either end of the line). Then

we can verify that E[𝑔 𝑗 𝑡𝑔
′
𝑗 ,𝑡−1] ≠ 0 in general, whereas E[𝑔 𝑗 𝑡𝑔

′
𝑗 ,𝑡−ℓ] = 0 for ℓ > 1,

exhibiting a serial correlation similar to an 𝑀𝐴(1) process in time series. Analogous

patterns arise when more markets are captured by the Hausman instrument. Note

that the order of serial correlation (one in this specific case) depends on the choice

of the Hausman instrument, not on the true correlation structure of the cost shifters.

Autocorrelation-robust variance estimators can be employed for such cases. A

popular choice is by Newey and West (1987). Given the maximum lag 𝐿 chosen by

the researcher, the estimator for Ω is

Ω̂ =
1
𝑛

∑︁
𝑗

[
𝑇∑︁
𝑡=1

b̂2
𝑗 𝑡𝑧 𝑗 𝑡𝑧

′
𝑗 𝑡 +

𝐿∑︁
ℓ=1

𝑇∑︁
𝑡=ℓ+1

^ℓ b̂ 𝑗 𝑡 b̂ 𝑗 ,𝑡−ℓ
(
𝑧 𝑗 𝑡𝑧

′
𝑗 ,𝑡−ℓ + 𝑧 𝑗 ,𝑡−ℓ𝑧

′
𝑗 𝑡

)]

where ^ℓ is the Bartlett kernel:

^ℓ =


1 − ℓ

1 + 𝐿
ℓ ≤ 𝐿

0 ℓ > 𝐿.

The first term in Ω̂ forms the usual heteroscedasticity-robust variance estimator. The

second term adds autocovariances between 𝑔 𝑗 𝑡s across markets. Although the order

of serial correlation is known by the construction of the Hausman instrument, the
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literature nevertheless recommends setting 𝐿 → ∞ as 𝑇 → ∞.10 A rule-of-thumb

choice is 𝐿 = ⌊0.75𝑇1/3⌋.

In more realistic scenarios where cities are situated in a two-dimensional space

or a network, methods from spatial or network econometrics can be employed

depending on the assumption about how markets are related to each other and on the

construction of Hausman instruments. Conley (1999) introduces a spatial model of

dependence and provides a consistent variance estimator. For instance, if markets

(𝑠, 𝑡) ∈ {1, . . . , 𝑆}×{1, . . . , 𝑇} are in an integer lattice as in Figure 1c, the estimator

therein can be written as

Ω̂ =
1
𝑛

∑︁
𝑗

[
𝐿𝑆∑︁
𝑘=0

𝐿𝑇∑︁
ℓ=0

∑︁
𝑠,𝑡

^𝑘ℓ b̂ 𝑗 ,(𝑠,𝑡) b̂ 𝑗 ,(𝑠−𝑘,𝑡−ℓ) (𝑧 𝑗 ,(𝑠,𝑡)𝑧′𝑗 ,(𝑠−𝑘,𝑡−ℓ) + 𝑧 𝑗 ,(𝑠−𝑘,𝑡−ℓ)𝑧
′
𝑗 ,(𝑠,𝑡))

]
− 1
𝑛

∑︁
𝑗

∑︁
𝑠,𝑡

b̂2
𝑗 ,(𝑠,𝑡)𝑧 𝑗 ,(𝑠,𝑡)𝑧

′
𝑗 ,(𝑠,𝑡) ,

with suitable choices of maximum lags 𝐿𝑆 and 𝐿𝑇 , where

^𝑘ℓ =

(
1 − |𝑘 |

1 + 𝐿𝑆

) (
1 − |ℓ |

1 + 𝐿𝑇

)
· 1{|𝑘 | ≤ 𝐿𝑆, |ℓ | ≤ 𝐿𝑇 }.

As an extension of the Newey–West estimator to multidimensional Euclidean spaces,

this variance estimator also accounts for covariances between 𝑔 𝑗 𝑡s across markets.

We may consider various other estimation methods depending on the inter-

market structure in each particular empirical context. However, its discussion is

beyond the scope of this paper. The key point is that whenever the price in 𝑡′ is

incorporated to form a Hausman instrument for 𝑡 (and vice versa), the dependence

10See Section 6.2.2 of Ogaki (1993). The main rationale is to ensure positive definiteness of Ω̂.
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between 𝑡 and 𝑡′ must be taken into account when calculating the standard error.

4 Monte Carlo simulation

In this section, I conduct Monte Carlo simulations to evaluate the performance

of standard errors that account for the correlation pattern induced by two popular

classes of Hausman instruments: region-based and adjacency-based instruments.

From now on, by non-robust standard errors I mean standard errors that are

only robust against heteroscedasticity, i.e., the default of PyBLP. By robust standard

errors I mean standard errors that correctly account for the correlation between 𝑔 𝑗 𝑡s.

In the clustered markets case, the robust standard error is the clustered standard

error. In adjacent markets case, it is the standard error methods by Newey and West

(1987) and Conley (1999).

4.1 The data generating process

The data is simulated according to the nested logit model where the indirect utility

from product 𝑗 belonging to group 𝑔 is given by

𝑢𝑖 𝑗 𝑡 = 𝛽0 + 𝛽1𝑥 𝑗 𝑡 − 𝛼𝑝 𝑗 𝑡 + b 𝑗 𝑡 + Z𝑖𝑔 + (1 − 𝛾)𝜖𝑖 𝑗 𝑡

where 𝛾 is the nesting parameter. I set the true parameter values as 𝛼 = 1, 𝛽 =

(𝛽0, 𝛽1) = (1, 1), 𝛾 = 0.5, and hence \ = (𝛼, 𝛽, 𝛾) = (1, 1, 1, 0.5).

The product characteristic 𝑥 𝑗 𝑡 is drawn from the standard normal distribution.

The preference shock 𝜖𝑖 𝑗 𝑡 is independently drawn from the type I extreme value
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distribution, and the individual-group specific shock Z𝑖𝑔 is drawn from the unique

distribution that makes Z𝑖𝑔 + (1 − 𝛾)𝜖𝑖 𝑗 𝑡 an extreme value random variable.11

The marginal cost is specified as

𝑐 𝑗 𝑡 = 1 + 𝑤 𝑗 𝑡 + 𝜔 𝑗 𝑡 .

How I draw 𝑤 𝑗 𝑡 will vary in each setting as described below. Demand and cost

shocks b 𝑗 𝑡 and 𝜔 𝑗 𝑡 are drawn from a bivariate normal distribution, each with a mean

of zero and a variance of two, their correlation coefficient being 0.9. They are drawn

independently across 𝑡 and 𝑗 and independently from other variables.

There are𝑇 = 600 markets, each having two groups for inside goods. Each group

consists of two inside goods (𝐽 = 4 in total). Each product is produced by a distinct

single-product firm. The equilibrium prices and market shares are determined in

the Bertrand–Nash price-setting game.

I estimate the demand parameters via two stage least squares, using Hausman

instruments that are the average price of the same product in other markets within

the scope of the instruments. The scope—i.e., the markets captured by a Hausman

instrument (or the number of such markets depending on the context)—varies in

each setup. In addition to the Hausman instrument, I use two BLP instruments: the

sum of the characteristic of the rival products in the same market and the sum of the

characteristic of the rival product within the same group.

11See Berry (1994) and Cardell (1997) for more details on the nested logit model.
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4.2 Clustered markets

I first set the scope of the Hausman instrument to correctly follow the actual region

(in which the markets share the same cost shifter as per the data generating process),

and examine the performance of the standard errors. The common cost shifter is

drawn from the standard normal distribution for each region.

The results are tabulated in Table 1. The standard errors for �̂� are plotted in

Figure 2.12 The true standard error of the price coefficient estimator (simulated

by Std. dev. �̂�) initially declines with increasing region size, likely because the

Hausman instrument gathers more information on the cost. However, as the regions

become very large, the true standard error of �̂� starts to grow. This phenomenon

may be due to excessive noise entering the instrument, or due to little variation in

the instrumental variable across markets.

Overall, the non-robust standard error is inaccurate; the actual coverage of the

nominal 95% confidence interval based on the non-robust standard error is lower

than 95%, meaning that the non-robust standard error overestimates the accuracy

of the demand estimate. On the other hand, the robust standard error performs

better than the non-robust one until the size of regions reaches 50. After that, the

performance of the robust standard error deteriorates likely due to the insufficient

number of clusters. For small number of clusters, the non-robust standard error

seems to be a better choice.

The results for other parameters are mostly omitted from the table. I find that 𝛽0

exhibits a pattern similar to �̂�. Surprisingly, the behaviors of 𝛽1 and �̂� remain stable

12The region size 600 is omitted from the figure due to its disproportionately large magnitude on
the y-axis; the standard deviation of �̂� for this case is 0.258. Similar omissions occur in Figure 3.
The x-axis is not to scale in this and subsequent figures.
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Figure 2: Standard errors for �̂� in clustered markets (correct regions)

Notes: The x-axis is the scope of the Hausman instrument, i.e., the size of each cluster used in the
clustered standard error. The curves are plotted under the assumption that the actual regions (in
which the cost shifter is constant across markets) coincide with the clusters.

across various region sizes, with their true standard errors consistently low, ranging

between 0.04 and 0.06. Both robust and non-robust standard errors accurately

estimate the true standard errors—except in cases of very large regions, possibly

due to contamination caused by poor estimation of 𝛼 and 𝛽0. It appears that BLP

instruments are sufficient to identify these parameters in this special case of the

nested logit model. However, this is not the case in general.13

Next, I consider the performances of standard errors under various scopes of

13For identification in general nonparametric settings, see Berry and Haile (2014).
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the Hausman instrument, while keeping the actual region size at 12. This exercise

explores the impact of misspecifying the scope of the common cost shifter. Results

are shown in Table 2 and Figure 3.14 Note that, in each case, there are 50 actual

regions, each with 12 markets (i.e., the size of actual regions is 12) sharing a common

cost shifter. “Scope of IV = 2” refers to the case in which the researcher divides

each actual region of size 12 further into 6 clusters of size 2 (hence “scope of IV =

2”) to construct the Hausman instrument. On the other hand, “Scope of IV = 24”

involves merging two regions into one cluster consisting of 24 markets to construct

the instrument.

The true standard error (denoted as Std. dev. �̂�) of the estimator is the smallest

when the researcher correctly specifies the scope within which the cost shifter is

shared. Including too few markets provides not enough proxies for the cost, whereas

including too many markets makes the instrument weak. The robust standard error

performs better than the non-robust one in most cases. The robust standard error

approximates the true standard error particularly well when the researcher sets the

scope of the Hausman instrument smaller than the actual region. It does not perform

better than the non-robust standard error with large scopes, likely due to the small

number of clusters. Both methods show very poor performance when the scope is

very large. This is probably partly due to the poor performance of the parameter

estimator \̂ under weak instrumental variable.

Similar results can be found in Appendix B, where the size of the actual regions

is varied over 12, 30, 60, 120, 300, and 600. The robust standard error consistently

14Only the results for the price coefficient 𝛼 are listed, as other parameters exhibit essentially the
same pattern as before; the estimate for 𝛽0 behaves similarly to that of 𝛼, and the estimates for 𝛽1
and 𝛾 are not affected by the choice of the Hausman instrument.
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Figure 3: Standard errors for �̂� in clustered markets (misspecified regions)

Notes: The x-axis is the scope of the Hausman instrument, i.e., the size of each cluster used in the
clustered standard error. A vertical dashed line is positioned to denote the size of the actual region,
which is 12.

outperforms when the scope of the instrumental variable is small. However, with

fewer clusters, it performs worse than the non-robust standard error.

To summarize, the true variance is relatively small when the size of actual regions

is moderate. The robust standard error is accurate when the number of clusters is

large. It is therefore recommended to find moderately sized regions within which

some cost shifters are presumed to be common, and apply the clustered standard

error. In situations where one must rely on the assumption of a national-level cost

shifter, then the non-robust standard error might be a better choice.
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4.3 Adjacent markets

Two cases are considered in this subsection, in which markets are on a line and on

an integer lattice, respectively. In both cases, the Hausman instrument is the average

of the prices of the same product in the immediately adjacent markets, as in Figures

1b and 1c. Therefore, the Hausman instrument captures two markets in the former

case, and four markets in the latter case.

In the line world, the cost shifter 𝑤𝑡 is generated as the moving average of five

normal variates so that the variance of𝑤𝑡 is one, i.e., 𝑤𝑡 = ([𝑡−2+[𝑡−1+· · ·+[𝑡+2)/
√

5

with each [𝑡 drawn independently from the standard normal distribution. In the

lattice world where each market is represented by a pair (𝑠, 𝑡), the cost shifter 𝑤𝑠𝑡 is

generated as the moving average of 25 normal variates such that the variance of 𝑤𝑠𝑡

is one, i.e., 𝑤𝑠𝑡 =
∑2

ℓ=−2
∑2

𝑘=−2 [𝑠+ℓ,𝑡+𝑘/5, where each [𝑠𝑡 is an independent standard

normal variate.

I use variance estimators by Newey and West (1987) and Conley (1999), respec-

tively. Unlike their original forms, however, I let 𝐿 = 1 and use ^1 = 1 instead

for the Newey–West estimator, and analogously for the Conley estimator. Using

weights ^ℓ < 1 and letting 𝐿 → ∞ was originally motivated by the anomaly that the

calculated variance matrix may fail to be positive definite, but I do not observe this

phenomenon in the current simulation exercise.

Table 3 tabulates the results, which are similar to what we have obtained in the

clustered markets case; robust standard errors approximate the true standard errors

well. On the other hand, non-robust standard errors for �̂� and 𝛽0 underestimate

the true standard errors, leading to under-coverage of the nominal 95% confidence

intervals.
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Table 3: Standard errors in markets on a line and a lattice

Line Lattice

Parameter 𝛼 𝛽0 𝛽1 𝛾 𝛼 𝛽0 𝛽1 𝛾

Average \̂ 1.009 1.010 0.999 0.501 1.008 1.009 1.000 0.501
Std. dev. \̂ 0.126 0.135 0.060 0.043 0.102 0.110 0.060 0.043

Robust s.e. 0.125 0.136 0.060 0.043 0.100 0.110 0.060 0.043
95%-coverage 0.949 0.952 0.949 0.949 0.945 0.949 0.949 0.949

Non-robust s.e. 0.103 0.113 0.060 0.043 0.085 0.096 0.060 0.043
95%-coverage 0.891 0.900 0.949 0.948 0.900 0.910 0.948 0.949

Notes: Each experiment is based on 2,000 simulation draws. Average \̂ is the sample mean of the
simulated estimates, and Std. dev. \̂ is the standard deviation of the estimates. Non-robust s.e. is
the mean of the estimated standard errors that are only robust against heteroscedasticity. Robust
s.e. is the mean of the estimated standard errors that are robust against correlation between 𝑔 𝑗𝑡s.
95%-coverage calculates the actual coverage of a nominal 95% confidence interval formed by using
the respective standard error.

5 Conclusion

In this paper, I address the previously overlooked issue of correlation in the sample

moments across markets in demand estimation, induced by the essential endogene-

ity of Hausman instruments. I show that common methods of calculating standard

errors can be inaccurate by not accounting for the correlation, and propose practi-

cal and easily implementable remedies in leading cases of Hausman instruments.

When using a region-based Hausman instrument, one needs to use a standard error

clustered at the region level. When using an adjacency-based Hausman instrument,

one needs to use an autocorrelation-robust standard error or a standard error that

accounts for cross-sectional dependence. The key takeaway is that one needs to

examine, as demonstrated in the paper, the correlation structure that emerges from

the researcher’s choice of the Hausman instrument, and use an appropriate variance
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estimator.

In the clustered markets context, Monte Carlo simulations indicate that clustered

standard errors are accurate with a large number of clusters. For a small number

of clusters, the conventional standard errors, despite their inaccuracies, might be

preferable. The true variance of the estimator tends to be smaller when the actual

data generating process is that the actual regions, within which the cost shifters

are common, are moderately sized. Based on these findings, it is recommended to

find moderately sized regions within which some cost shifters are believed to be

common, and then apply clustering to accurately estimate the true standard error.

A An example of nonzero correlation

For a simple analytic illustration that 𝑔 𝑗 𝑡 can be correlated across markets, suppose

each market is a monopoly with the demand function 𝑞(𝑝) = 2 − 𝑝 + b𝑡 and the

marginal cost 𝑐𝑡 = 𝑤𝑡 . To incorporate this into the discrete choice model framework,

we may set 𝑢𝑖1𝑡 (𝑝) = 2 − 𝑝 + b𝑡 − 𝜖𝑖1𝑡 and 𝑢𝑖0𝑡 (𝑝) = 0 with a constant market size 1,

where 𝜖𝑖1𝑡 is uniformly distributed on [0, 1]. Assume that b𝑡 and b′𝑡 are independently

drawn from {−1, 1} with equal probability, independent from 𝑤 = (𝑤𝑡 , 𝑤
′
𝑡). The

distribution of 𝑤 may be left unspecified, but assume that the support of 𝑤𝑡 and

𝑤′
𝑡 lies in [0, 1] for convenience. Then the equilibrium price is determined by

𝑝𝑡 = 1 + (b𝑡 + 𝑤𝑡)/2, and we have E[𝑔𝑡𝑔𝑡′] = E[𝑝𝑡′b𝑡 𝑝𝑡b𝑡′] = 1/4 > 0.

31



B More results on misspecified regions

The following figures plot the actual coverage probability of the nominal 95%

confidence intervals (CIs) based on the robust- and non-robust standard errors. In

each plot, the x-axis is the scope of the Hausman instrument, i.e., the size of each

cluster used in the clustered standard error. Vertical dashed lines are positioned

to denote the size of the actual region, i.e., the region in which the cost shifter is

constant across markets.
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Figure 4: Coverage of CIs in clustered markets (misspecified regions, true = 12)
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Figure 5: Coverage of CIs in clustered markets (misspecified regions, true = 30)

2 3 4 5 6 10 12 15 20 30 60 120 300 600
Scope of Hausman instrument

0.70

0.75

0.80

0.85

0.90

0.95

A
ct

ua
l c

ov
er

ag
e

Nominal coverage (95%)
Robust CI
Nonrobust CI

Figure 6: Coverage of CIs in clustered markets (misspecified regions, true = 60)
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Figure 7: Coverage of CIs in clustered markets (misspecified regions, true = 120)
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Figure 8: Coverage of CIs in clustered markets (misspecified regions, true = 300)
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Figure 9: Coverage of CIs in clustered markets (misspecified regions, true = 600)
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