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Abstract

I propose an approach to inference on BLP-style demand models when instruments

are potentially weak. I show how in practice one can adapt the two-step identification-

robust procedure proposed by Andrews (2018) to such models. Direct application of

this approach introduces substantial computational complexity, since it requires grid

search over a potentially large parameter space. I provide conditions under which the

time complexity of the procedure is reduced from the total number of parameters to the

number of so-called “nonlinear parameters.” Monte Carlo simulations reveal that the

two-step confidence set, equipped with my dimension reduction technique, achieves the

correct coverage probability. It is also shown that, although the technique is developed

under the assumption of homoscedasticity, the resulting confidence set still performs

well when the true structural errors are heteroscedastic.
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1 Introduction

This paper proposes an approach to inference in BLP-style demand estimation (Berry, Levin-

sohn, and Pakes, 1995) when instruments may be weak. Instruments for prices and quantities

are essential to identification of such models, and various types of instruments have been con-

sidered in the literature. On the other hand, there are growing concerns about instruments

that are inherently weak and their implications for inference.

To the best of my knowledge, this paper is the first exploration of applying an econometric

method that is robust to weak identification in the context of demand estimation. To do

so, I adapt the two-step confidence set proposed by Andrews (2018). One challenge of

such identification-robust approach is its computational cost when the parameters are of

high dimension. My approach softens this cost by providing conditions under which the

dimensionality of expensive grid search can be significantly reduced. In this regard, I provide

practical guidance for adapting a recent development in econometrics to an important class

of applications in empirical industrial organization.

Monte Carlo simulations show that the coverage probability of the conventional non-

robust confidence set is compromised under weak identification, whereas the proposed robust

confidence set equipped with the dimension reduction technique does attain the correct

coverage probability when the conditions are met. Furthermore, the conditions I impose for

computational ease have minimal impact on the performance of the robust confidence set.

Since Berry (1994) provided a way to reformulate demand models into generalized method

of moments (GMM) problems, the BLP estimator by Berry, Levinsohn, and Pakes (1995) has

been a central tool in empirical industrial organization. Several types of instruments have

been proposed in response to different data availability.1 Those instrumental variables are

to provide sufficient exogenous variation to shift the market shares and prices independent

of the demand shocks associated with each product–market pair. An important question, of

course, is whether the instruments are strong enough, i.e., whether they provide sufficient

variation in the endogenous variables. This concern is manifested in the emphasis on optimal

instruments by Berry, Levinsohn, and Pakes (1995), Reynaert and Verboven (2014), Gandhi

and Houde (2019), and Conlon and Gortmaker (2020).

When instrumental variables are weak, GMM estimators (which include the BLP estima-

tor) are known to not behave according to the conventional asymptotics. In particular, the

estimators are not asymptotically normal, and the corresponding confidence sets do not have

correct coverage probability under weak identification asymptotics, potentially resulting in

misleading policy implications. For example, when determining a relevant market for tradi-

1See Berry and Haile (2021) for discussion about various types of instruments.
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tional antitrust merger policy, demand estimates play a key role in predicting the changes in

the profit due to a marginal increase in the prices of a hypothetical monopolist in a candidate

market. If the conventional confidence interval for this profit change suffers under-coverage

due to weak identification,2 then it might fail to capture the true profit changes more often

than as intended. Also, a researcher might mistakenly regard the result as more precise than

it is, due to the spuriously narrow confidence interval.

The econometrics literature has worked on tests for weak identification and inference

that is robust to weak identification, although primarily for simpler empirical settings. This

paper implements such robust inference, for the first time in the context of BLP-style models.

Specifically, I employ the two-step procedure by Andrews (2018). It has an advantage in

that it also provides an “informal” test as to whether the instruments are weak,3 while

guaranteeing a pre-specified level of the resulting confidence set, under both strong and

weak identification.

One hurdle in implementing an identification-robust confidence set, including that of

Andrews (2018), is the expensive computational cost it incurs. Existing robust confidence

sets are constructed by inverting a test statistic, for which grid search is a usual choice due

to its simplicity and robustness. However, grid search often requires a large number of points

at which the test statistic is to be evaluated. In particular, the number of grid points grows

exponentially in the number of parameters, potentially requiring days or weeks to obtain

a confidence set. Exacerbating this challenge is the fact that the size and location of the

grid to be considered are not clear ex ante. These practical challenges may be increasingly

relevant as more product characteristics become available and therefore the dimension of the

parameter space increases due to increasing data availability.

To overcome these challenges surrounding grid search, I provide a condition under which

the dimension of the grid can be reduced. The condition consists of two assumptions, namely

just-identification and homoscedasticity. Under just-identification, the robust statistic used

in the two-step method reduces to a nonlinear Anderson-Rubin-type (AR-type) test statis-

tic. Using homoscedasticity, I transform the test statistic into the linear AR test statistic

conditional on “nonlinear” parameters, akin to the separation between linear and nonlinear

parameters in the nested fixed point algorithm for BLP. Then I apply a method by Dufour

and Taamouti (2005) to obtain the analytic representation of the corresponding robust confi-

2In general, under-coverage is considered a more serious problem. As for weak identification, there are
few results about whether under- or over-coverage prevails.

3To the best of my knowledge, in the context of nonlinear instrumental variables models, there is not yet
a widely adopted formal test for detecting weak identification, if any, unlike the first-stage F -test by Stock
and Yogo (2005). See Berry and Haile (2021) for discussion. One of the few proposals in the BLP context
is that of Gandhi and Houde (2019), who propose a test for independence of irrelevant alternatives (IIA) as
a test of weak identification. I discuss in Section 2.4 what is meant by the qualifier “informal.”
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dence set, which then takes a simple geometrical shape known as quadric, of which ellipsoids

are special cases. The first step of the two-step procedure additionally requires checking

whether a robust confidence set is included in the conventional confidence set. Although the

confidence sets involved are now quadrics, checking such inclusion is not a trivial task. To

this end, I apply the S-lemma from control theory to reduce the problem to an optimization

of a single variable concave function, which permits fast numerical solution.

My approach reduces the dimension of the required grid from the total number of param-

eters to the number of nonlinear parameters only. I detail an algorithm that implements the

procedure, with a suggestion of how to form a grid for the remaining nonlinear parameters.

I conduct Monte Carlo simulation exercises to evaluate my proposed approach. The re-

sults show that the conventional non-robust confidence set exhibits under-coverage under

weak identification scenarios. In contrast, the robust two-step confidence set has coverage

probability around the nominal coverage probability under both weak and strong identi-

fication. I also investigate how much the homoscedasticity assumption, which is poten-

tially restrictive, distorts the confidence set when the true structural errors are actually

heteroscedastic. The results show that the robust confidence set obtained using the dimen-

sion reduction technique (assuming homoscedasticity) still performs well. It performs better

than a confidence set that is robust against heteroscedasticity but not robust against weak

identification. It also approximates well the confidence set that is robust against both weak

identification and heteroscedasticity (yet requiring full grid search). This suggests that the

method can be useful as a good approximation to the fully robust confidence set, or as

guidance for how to form a grid for obtaining the confidence set robust against both weak

identification and heteroscedasticity.

The paper is organized as follows. Section 2 introduces the BLP model and describes how

to construct the two-step confidence set by Andrews (2018). Section 3 discusses difficulties in

applying the two-step procedure, proposes a method to reduce the dimensionality of the grid

search under two main assumptions, and provides an algorithm to implement it. Section 4

conducts Monte Carlo simulations to investigate the properties of the two-step confidence set

with the low-dimensional grid search, under both strong and weak identification scenarios,

with both homoscedastic and heteroscedastic errors.

2 The model and the two-step confidence set

In this section, I lay down the discrete choice demand model of interest (commonly referred to

as the BLP model) and describe the construction of the two-step confidence set by Andrews

(2018). Along the way, the concept of weak identification and some desirable properties of
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the two-step procedure are briefly discussed.

The rest of this paper focuses on inference on the entire vector of the parameters, rather

than its sub-vector or a known function of it.4 Also, I consider the case where a researcher

only assumes the demand side model, without restrictions on the supply side, as in Nevo

(2000); Conlon and Gortmaker (2020) suggest that with correctly specified supply side and

optimal instruments, the BLP estimator tends to be well-behaved in finite sample, even when

the instruments are fairly weak.

2.1 The discrete choice model and the BLP estimator

Consider a discrete choice model, where specifically, consumer i’s conditional indirect utility

from good j ∈ {1, . . . , J} is5

uijt = x′
jtβ − αpjt + ξjt + µijt + ϵijt ≡ δjt + µijt + ϵijt,

where t = 1, . . . , T denotes markets. The distribution of µijt may be parameterized by

γ. Consumer i’s utility depends on the characteristics xjt, the price pjt, the unobserved

product-level heterogeneity term ξjt, and the individual-product-level heterogeneity terms

µijt and ϵijt. For example, in a random coefficient model, µijt = x′
jtνi with νi ∼ N(0,Σ(γ)),

where Σ(γ) is a positive semidefinite matrix that depends on γ. The idiosyncratic error term

ϵijt usually independently and identically follows the type I extreme value distribution. The

outside option, represented by j = 0, is assumed to yield the utility ui0t = ϵi0t.

The market share is then

sjt =

∫
1(uijt ≥ uikt ∀k)dF (ϵ, µ) =

∫
exp(δjt)

1 +
∑J

k=1 exp(δkt)
dF (µ)

where F denotes the joint distribution of ϵ and µ. The second equality holds under the

assumption that ϵijt follows the type I extreme value distribution.

In standard parametric discrete choice models, we can invert the market share to derive

4When a researcher is interested only in a subset of parameters, deriving a confidence set for the entire
vector and then taking the corresponding projection of the confidence set results in a conservative confidence
set; i.e., the coverage probability is higher than the nominal coverage probability. Non-conservative inference
on sub-vectors or a known non-stochastic function of the entire parameter vector is an active research area.
However, in demand estimation, the objects of interest such as price elasticities or diversion ratios often
involve the entire parameter vector. They are indeed functions of parameters, but those functions also
depend on the data, for which case I am not aware of a result yet.

5I assume the number of products is the same across markets for simplicity.
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δjt from the observable variables, for a given value of γ (Berry, 1994):6

δjt(γ) ≡ δjt(γ; st, pt, xt).

The structural error, given a parameter value θ = [β′, γ′]′, is then

ξjt(θ) = δjt(γ)− x′
jtβ

where (and hereafter) we let xjt and β include pjt and α respectively, and omit the observed

variables st and xt in δjt(γ; st, xt). As γ enters the expression for the error nonlinearly while β

does so linearly, the parameters are called “nonlinear” and “linear” parameters respectively.

The identifying assumption is that the structural error ξjt(θ) is uncorrelated7 with in-

struments zjt at (and only at) the true parameter value θ0:

E[zjtξjt(θ0)] = 0.

Writing gjt(θ) = zjtξjt(θ), the BLP estimator θ̂ (Berry, Levinsohn, and Pakes, 1995)

minimizes the generalized methods of moments (GMM) criterion function:8

θ̂ = argmin
θ

gn(θ)
′Angn(θ),

where n = JT is the total number of products, g(θ) = n−1
∑

jt gjt(θ) = n−1
∑

jt zjtξjt(θ),

and An is a GMM weighting matrix that can possibly depend on θ as in the continuously

updating estimator.

2.2 The standard confidence set

In what follows, dim v for a vector v denotes the dimension of v, and dim f for a vector-valued

function f is the dimension of the range. χ2(k) represents the chi-squared distribution with

degree of freedom k, and χ2
1−α(k) is the 1− α quantile of χ2(k).

Given the GMM estimator θ̂, the usual choice of confidence set is obtained by inverting

6Berry, Gandhi, and Haile (2013) provide conditions under which such an inversion is possible in a general
nonparametric setting.

7This is usually an implication of mean-independence assumption: E[ξjt|z̃jt] = 0 almost surely, based on
which z is chosen as a function of instruments z̃.

8Since the inversion of the share function to calculate δjt(γ) typically involves numerical integration via
a Monte Carlo simulation, one needs to take into account the error from such simulation when deriving the
asymptotic variance (Berry, Linton, and Pakes, 2004). In this paper, however, I assume that the number of
simulation draws is sufficiently large or that the numerical integration uses other methods to achieve smaller
errors (Conlon and Gortmaker, 2020), and ignore the error from numerical integration.
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the Wald statistic W (θ):

W (θ) = (θ̂ − θ)′Σ̂−1
n (θ̂ − θ),

where Σ̂n is a consistent estimator for the asymptotic variance of
√
n(θ̂ − θ). The corre-

sponding confidence set with confidence level 1− α is9

CSN = {θ ∈ Θ : W (θ) ≤ χ2
1−α(dim θ)},

where Θ is a suitable parameter space. We shall call CSN the non-robust confidence set for

the reason I explain as follows.

Weak identification and non-robustness of CSN To discuss what weak identification

means, let the expected Jacobian of the moment condition at the true parameter be defined

as

G ≡ E
[
∂

∂θ′
gjt(θ0)

]
.

Weak identification pertains to cases where G is not full rank or G is “small,” whose exact

meaning depends on how one models weak identification. A popular choice, for example by

Staiger and Stock (1997) or Kleibergen (2005), is to have G drifting to zero at the rate of
√
n

as n→∞; e.g., G depends on n and G = C/
√
n where C is a finite matrix.10 This modeling

approach is also adopted by Andrews (2018) in the context of GMM.11 As this paper does

not pursue the derivation of new asymptotic properties of the robust confidence set, I refer

readers to Andrews (2018).

In any models of weak identification, it is central to the identification status whether the

9We have two α’s in this paper depending on the context; one is the mean price coefficient in the indirect
utility function, and the other is related to the confidence level as this one.

10A more general approach by Andrews and Guggenberger (2017) is to set a parameter space and study
the asymptotic size of tests or the asymptotic coverage probability of confidence sets in a uniform sense. An
advantage of this approach is that it allows for arbitrary sequences on the parameter space, including the
aforementioned

√
n-rate sequences.

11However, as mentioned in that paper, the two-step procedure itself is agnostic to the modeling choice
regarding weak identification, as long as its high-level assumptions are satisfied.
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Jacobian G is small.12 In the (parametric) BLP model, the Jacobian translates into[
E [pjtzjt] ,−E

[
zjtx

′
jt

]
,E
[(

∂

∂γ′ δjt(γ0; st, pt, xt)

)
zjt

]]
where we write α and pjt separately from β and xjt (unlike notation as above) for the sake

of interpretation.

From the first part, E[pjtzjt], we see that identification is weak when the instruments zjt

are not sufficiently relevant to the endogenous price pjt. The last part is somewhat harder

to interpret; we have weak identification when the instruments are not strongly relevant to

the variability of the inverse market share function with respect to the nonlinear parameter.

In a general sense, as the market share st appears in the expression, this shows us that the

instruments need to be sufficiently relevant to the market shares, in line with Berry and

Haile (2014). Indeed, in a nested logit model, the last part becomes E
[
(log sj|g,t)zjt

]
where

sj|g,t is the within-group market share of j in market t.

It is known that, under such weak identification, the GMM estimator (and hence the BLP

estimator) may not be asymptotically normal, and the corresponding standard confidence

set may not have correct coverage. This motivates the use of confidence sets that are robust

to weak identification, as described in the following subsection.

2.3 Robust confidence sets

To address incorrect coverage probability of the non-robust confidence set under weak iden-

tification, I apply the two-step procedure developed by Andrews (2018). The remainder of

this section reiterates the method by Andrews (2018) on how to construct confidence sets

that are robust against weak identification. Section 3 will discuss how I adapt this method

in a computationally feasible way.

The procedure requires some ingredients, including the non-robust confidence set de-

scribed in the previous subsection, and two robust confidence sets, denoted as CSP and

CSN . These two sets are constructed by inverting a test statistic, which in turn is a combi-

nation of two robust test statistics called S and K, the latter by Kleibergen (2005). In the

next section and for the rest of the paper, I assume that the demand model is just-identified.

I consider this assumption to be not restrictive, given that a demand model is just-identified

12It is worth mentioning that the boundary between strong and weak identification is often not clear-cut
in finite sample, or may not be even defined when asymptotics is involved. It is not as straightforward as,
for a contrived example, “the identification is weak if the matrix norm of G is smaller than a certain value.”
Rather, when we model weak identification in terms of drifting sequences of parameters, the identification
status is a feature of such sequences, rather than a partition of the parameter space given a fixed T . In this
paper, however, I use the terms weak identification and strong identification loosely to avoid complication.
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when optimal instruments are used, and as those can be conveniently computed using pack-

ages like PyBLP (Conlon and Gortmaker, 2020). An implication of just-identification in the

current context is that K coincides with S, and hence K does not need to be calculated

separately from S. Therefore, for simplicity, I present the robust statistic in its simplified

(yet still correct) form that arises under just-identification.13

The weak identification literature has developed methods mainly based on the S statistic,

which is often called the AR-type test statistic (Anderson and Rubin, 1949; Stock andWright,

2000). The statistic is a quadratic form of the average moment function gn(θ):

S(θ) = ngn(θ)
′Ωn(θ)

−1gn(θ)

where Ωn(θ) is a consistent estimator for Var(gjt(θ)). Under the null that E[zjtξjt(θ)] = 0, the

test statistic converges in distribution to χ2(dim g), regardless of the Jacobian E[∂gjt(θ)/∂θ′],
i.e., even under weak identification.14

To construct the test statistic, a researcher first chooses a number ζ > 0 (e.g., ζ = 0.05)

such that they are willing to take 1−α−ζ as the lower bound of the coverage probability under

weak identification. It turns out that the larger ζ is, the more likely the two-step procedure

will indicate strong identification; we see a trade-off here. If a researcher prefers that the

procedure indicates strong identification (by setting a larger ζ), then she takes higher risk of

misclassifying the identification situation as strong when the true data generating process in

fact is of weak identification. When such misclassification occurs, the coverage probability

of the reported non-robust confidence set may deviate from the nominal level 1 − α, more

so as ζ becomes larger. Given the choice of ζ, let a = χ2
1−α(dim θ)/χ2

1−α−ζ(dim θ)− 1.

Now define two robust confidence sets:

CSP = {θ ∈ Θ : S(θ) < χ2
1−α(dim θ)/(1 + a)}

CSR = {θ ∈ Θ : S(θ) ≤ χ2
1−α(dim θ)}.

(1)

We call CSP the preliminary robust confidence set, as it will be used in the first step of the

procedure. As S(θ) converges in distribution to χ2(dim g) under the null, which is equivalent

to χ2(dim θ) when the model is just-identified, we see that the critical values are designed

so that CSP and CSR have coverage probability of 1− α− ζ and 1− α respectively.

13See Andrews (2018) for the construction of the robust statistic under over-identification that uses K.
14As can be seen from the construction, the test statistic directly measures how much the empirical moment

condition gn(θ) deviates from zero, instead of being based on the estimator θ̂ whose asymptotic distribution
depends on the Jacobian.
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2.4 The two-step confidence set

With the non-robust confidence set CSN and robust confidence sets CSP and CSR, the two-

step confidence set is constructed as follows. The first step checks whether CSP ⊆ CSN . If

so, it is interpreted as an indication of strong identification, and weak identification otherwise.

The idea behind this is that both robust and non-robust confidence sets CSN and CSR behave

similarly to each other under strong identification. Therefore a set smaller than CSR, namely

CSP in this context, will tend to be included in CSN under strong identification.

In the second step, the non-robust confidence set CSN is reported if the first step indicates

strong identification, and the robust confidence set CSR is reported for weak identification;

i.e., the resulting confidence set is

CS2 =

CSN if CSP ⊆ CSN

CSR if CSP ̸⊆ CSN .

The role of ζ becomes clearer in this context. The preliminary set CSP is constructed

by shrinking CSR. As the value of ζ increases, CSP becomes smaller, resulting in a reduced

coverage probability of CSP , specifically 1− α− ζ. As CSP becomes smaller, the first step

is more likely to indicate strong identification, which would increase the risk of reporting

the misbehaving non-robust confidence set CSN when the true data generating process is

actually weakly identified. However, even when such misclassification occurs, the set inclu-

sion relationship between CSN and CSP helps bound the extent of the misbehavior; if the

first step (wrongly) indicates strong identification, then CSN contains CSP by construction.

As CSP has coverage probability of 1 − α − ζ, the coverage probability of CSN is at least

1− α− ζ.

The two-step method satisfies the following properties: (i) along any strongly identi-

fied sequence of parameters, the first step indicates strong identification with probability

approaching one, (ii) along any weakly identified sequence of parameters, the two-step con-

fidence set CS2 has an asymptotic coverage probability of at least 1− α, and (iii) along any

weakly identified sequence of parameters, CS2 has an asymptotic coverage probability of at

least 1− α − ζ. For a formal statement and sufficient regularity conditions, see Theorem 1

by Andrews (2018).

The first property suggests that the first step may be considered as an “informal” test

of weak identification; it gives us a consistent test for the null of weak identification, in that

the rejection probability of the test approaches one when the true data generating process is

of strong identification. However, it is not a test in a usual sense, in that it does not control

the size of the test; we do not know the probability of falsely rejecting the null when the true
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data generating process is indeed of weak identification. The Monte Carlo simulations in

Section 4 suggest that the first step does indicate weak identification with high probability

(if not with probability one) when the instrumental variables seem weak. Still, the procedure

does not pre-specify the type I error.

The third property only guarantees that CS2 has a coverage probability of at least 1 −
α−ζ, which is due to the coverage probability of CSN under weak identification as discussed

above. However, Monte Carlo simulations in Section 4 suggest that CS2 tends to achieve

a coverage probability around 1 − α under weak identification. Under weak identification,

the first step correctly indicates weak identification with high probability, in which case CS2

coincides with CSR, which is designed to have a coverage probability of 1− α.

3 Dimension reduction in the two-step method

The two-step method introduced in the previous section usually requires grid search, which

poses computational challenges. In this section I discuss how the dimensionality of the grid

can be significantly reduced, in particular when (i) inverting the robust test statistic to

construct CSP and CSR, and (ii) checking CSP ⊆ CSN in the first step of the procedure.

The results hinge on Assumption 1 and 2 which are introduced below. Then, I detail an

algorithm that utilizes the dimension reduction technique.

3.1 Inverting the robust test statistic

The confidence sets in the procedure—robust and non-robust ones—are obtained by inverting

the corresponding tests; for example, the non-robust confidence set CSN collects all the

parameter values θ (in the parameter space) at which the test statistic W (θ) does not exceed

the critical value χ2
1−α(dim θ).

The non-robust confidence set CSN is easy to handle due to its simple form. The left

hand side of the inequality (θ̂ − θ)′Σ̂−1
n (θ̂ − θ) ≤ χ2

1−α(dim θ) is quadratic in θ. As a result,

various properties immediately follow. These include the facts that the confidence set is an

ellipsoid centered around θ̂, and that a closed form solution exists when calculating projection

confidence intervals.

On the other hand, inverting a test in general is a non-trivial task in empirical work,

since a confidence set can take any shape and its closed form representation can be difficult

to derive (if any). The most popular approach in such cases is to conduct a grid search, due

to its simple implementation and robustness. A researcher specifies a finite set of points in

the parameter space, evaluates the test statistic at each point, and then collects all points
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at which the value of the statistic does not exceed the corresponding critical value.

However, grid search has two potential problems: (i) the number of grid points grows

exponentially with the number of parameters, and (ii) it is not clear ex ante where to

construct the grid in the large parameter space.

As an example, the demand model by Nevo (2000) involves ten linear parameters, let alone

nonlinear parameters. If one wants to apply the two-step identification-robust procedure

with ten parameters by constructing a coarse grid with ten points for each parameter,15 it

would require 1010, or ten billion grid points. To translate the magnitude into computation

time, it takes two minutes to run the two-step procedure for a nested logit with only five

parameters with ten points on each direction, in Python on a machine having 2.8 GHz CPU

with 20 cores. Increasing the dimension to ten would take 100,000 times that amount of

time, i.e., about 140 days. If, in addition, the grid is made slightly denser by increasing

the number of points in each direction to 20, then it would take 390 years. While a better

implementation, such as running the procedure in C instead, may significantly reduce the

computation time, I expect the magnitude to be still large especially with large number of

parameters are involved.

Another issue is regarding the location, the size, and the denseness of the grid to be

chosen by a researcher. In the mixed logit model by Nevo (2000), the linear parameter

estimates show a large variation in magnitude, from 0.03 to 43.04. Obviously significant

part of the variability is due to different scales of the characteristics variables, and one can

standardize the variables before estimation to reduce the variability. However, even so, we

do not know ex ante which characteristics would have larger or smaller coefficients, nor the

overall magnitude of the coefficients relative to the idiosyncratic error term ϵijt. Robust

confidence sets may be even unbounded, as shown by Dufour (1997), aggravating the issue

of the width choice of a grid.

Moreover, in combination with the previous point about computational burden, an in-

appropriate choice of the grid may result in imprecise results; if one chooses too wide a grid

but at low resolution due to computational cost, then the researcher might not detect the

confidence set. For example, suppose a true confidence interval (given the data) for one

of the parameters is [3.1, 3.8], but a researcher forms a coarse grid {0, 1, . . . , 10}.16 Then

the grid search would report that none of the grid points belong to the confidence interval,

leading the researcher to falsely conclude that the confidence set is an empty set, although

15A grid with ten points in each direction is arguably very coarse; for comparison, with two parameters,
Andrews (2018) chooses a grid of 201× 2, 641 points.

16As a reference, in a Stata command twostepweakiv by Sun (2018) that implements the two-step method
for linear instrumental variables models, the default number of grid points (in each dimension) is set to 100,
25, 11, 7, and 5 as the dimension of the grid increases from one to five.
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the confidence interval were to deliver a rather precise information about the parameter.

With these challenges in mind, I consider two assumptions that yield an analytic repre-

sentation of the robust confidence set, similar to the non-robust Wald confidence set.

Assumption 1 (Just-identified demand model). The demand model is just-identified; i.e.,

the number of instrumental variables equals the number of parameters.

When estimating the demand side without restricting the supply side (as mentioned

at the beginning of Section 2), just-identification is automatically satisfied when optimal

instruments are used.17 When there are only demand-side structural errors ξjt (rather than

having another set of structural errors from the supply side), the number of the optimal

instrumental variables coincides with the number of the parameters. Since packages such as

PyBLP (Conlon and Gortmaker, 2020) provide a readily available method to approximate

the optimal instruments, just-identification is not a restrictive assumption.

The next assumption is about the data generating process.

Assumption 2 (Homoscedasticity). The unobserved product-level heterogeneity ξjt is ho-

moscedastic across j and t, i.e., E[ξjt|zjt] = E[ξjt] almost surely.

This assumption is restrictive in general. As the structural error ξjt represents unobserved

product-level heterogeneity, such as product quality and latent taste variation across markets

for the product, the condition may not be adequate unless the products are similar in nature,

both within and across markets. Many different types of violation may occur; products

supplied by a particularly innovative firm may have higher variance of ξjt conditional on

observed characteristics. Markets with consumers that are more sensitive to product quality

may have higher variance of ξjt.

Even if homoscedasticity is considered too restrictive, my method to analytically represent

the robust confidence sets as below (under the homoscedasticity assumption) can still provide

guidance for constructing a relevant grid, in case one wants to apply the two-step procedure

under heteroscedasticity using grid search. I discuss this later with a Monte Carlo simulation.

Before stating the analytic representation result, let us define partial confidence sets. For

a confidence set CS and a value of nonlinear parameter γ, we call

CS(γ) = {β : (β, γ) ∈ CS}

a partial confidence set (derived from CS at γ).

17If one is willing to obtain a conservative confidence set, then this assumption is not needed; see remarks
after Proposition 3.1.

13



With the two assumptions, I derive the following result, which provides a closed form

representation of the partial robust confidence sets CSR(γ) and CSP (γ) given nonlinear

parameter γ.

Proposition 3.1. Suppose Assumptions 1 and 2 hold. For a given distortion bound ζ > 0,

let

a =
χ2
1−α(dim θ)

χ2
1−α−ζ(dim θ)

− 1 > 0.

Then the partial robust confidence sets CSR(γ) and CSP (γ) can be written in the following

form

{β : β′Aβ + 2b′β + c ≤ 0}

where

A = X ′
(
PZ −

C
n
M1

)
X

b = −X ′
(
PZ −

C
n
M1

)
δ

c = δ′
(
PZ −

C
n
M1

)
δ

with C = χ2
1−α(dim θ) for CSR and C = χ2

1−α(dim θ)/(1 + a) for CSP ,

X = [x′
1,1, . . . , x

′
JT ]

′ ∈ Rn×dimβ

Z = [z′1,1, . . . , z
′
JT ]

′ ∈ Rn×dim θ

δ = [δ1,1(γ), . . . , δJT (γ)]
′ ∈ Rn,

and projection matrices PZ = Z(Z ′Z)−1Z ′ and M1 = In− ιn(ι
′
nιn)

−1ι′n where In is the n× n

identity matrix and ιn ∈ Rn is the vector of ones.

Proof. Under just-identification, the K statistic by Kleibergen (2005) coincides with the S

statistic by Stock and Wright (2000). Therefore the robust test statistic by Andrews (2018)

can be written as (1+a)S, yielding confidence sets as defined in (1). By homoscedasticity, the

variance of the moment function is Var(gi(θ)) = σ2
ξEzjtz′jt, where σ2

ξ is the (unconditional)

variance of ξjt(θ). For this we choose an estimator σ̂2
ξ (θ) = n−1

∑
jt(ξjt(θ) − ξn(θ))

2 where
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ξn(θ) = n−1
∑

jt ξjt(θ). Using matrix notation,

σ̂2
ξ (θ) =

1

n
ξ(θ)′M1ξ(θ)

where ξ(θ) = [ξ1,1, . . . , ξJ,T ]
′ ∈ Rn, and also

Σ̂g(θ) =
σ̂2
ξ (θ)

n

∑
jt

zjtz
′
jt =

σ̂2
ξ (θ)

n
Z ′Z

gn(θ) =
1

n

∑
jt

zjtξjt(θ) =
1

n
Z ′ξ(θ).

Now the S statistic can be written as

S(θ) = ngn(θ)
′Σ̂g(θ)

−1gn(θ)

= ξ(θ)′Z
(
σ̂2
ξ (θ)Z

′Z
)−1

Z ′ξ(θ)

=
ξ(θ)′PZξ(θ)

ξ(θ)′M1ξ(θ)/n

=
(δ −Xβ)′PZ(δ −Xβ)

(δ −Xβ)′M1(δ −Xβ)/n
.

The inequality for the robust test with a critical value C is then S(θ) ≤ C, which is equivalent

to

(δ −Xβ)′PZ(δ −Xβ) ≤ C
n
(δ −Xβ)′M1(δ −Xβ),

(δ −Xβ)′
[
PZ −

C
n
M1

]
(δ −Xβ) ≤ 0.

Observing that the left hand side is quadratic in β given γ (and hence given δ), the result

follows from arranging the terms.

The proof combines ideas by Stock and Wright (2000) and Dufour and Taamouti (2005);

it first exploits the structure of the BLP-like models, to transform the nonlinear AR-type

test statistic into a linear AR test statistic (conditional on nonlinear parameters). Then it

derives a quadratic representation of the confidence sets. The resulting partial confidence sets

CSR(γ) and CSP (γ) are quadrics, i.e., the shapes defined by quadratic inequalities, whose

geometrical properties are known. Dufour and Taamouti (2005) provide such properties,

including conditions under which a quadric is bounded as well as the analytic solution of its

projections. For later reference, I collect them (from Theorems 4.1 and 5.1–5.3 therein) in
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Proposition A.1 under the assumption that A is nonsingular.18

By providing analytic representations of CSR(γ) and CSP (γ), Proposition 3.1 reduces

the dimensionality of forming a grid and searching over the grid from dim θ to dim γ. As

discussed above, this not only decreases computational burden but also gets rid of having to

choose an appropriate grid over β without prior knowledge; as Proposition A.1 shows, robust

confidence sets may be unbounded under weak identification. The quadratic representation

allows us to immediately check the boundedness of a partial robust confidence set. If it is

bounded, then projections of the set can be easily obtained, again by invoking Proposition

A.1.

As demonstrated in the proof, the purpose of just-identification assumption is to replace

a robust statistic K with S, since they are the same under just-identification. When the

model is over-identified, one can still proceed as the procedure prescribes (i.e., by inverting

S(θ) and therefore constructing A, b, and c as in Proposition 3.1). The resulting two-step

confidence set, however, will have a higher coverage probability compared to a confidence

set that inverts the original statistic K(θ) + aS(θ).

Note that we still need grid search over γ.19 This resembles different roles played by the

two sets of parameters in the BLP estimator; in minimization of the BLP-GMM objective

function, each trial value of nonlinear parameter γ requires a market share inversion. On

the other hand, given γ, the value of β that minimizes the objective function is analytically

solved using the linearity of δ with respect to β, thereby reducing the dimensionality of

nonlinear optimization from dim θ to dim γ.

As a non-robust confidence set is always an ellipsoid, its partial version is also an ellipsoid.

I conclude this subsection by presenting a quadratic representation of the partial non-robust

confidence set. Note that, in the proposition, [Σ̂−1]ββ is not the inverse of the top left

(dim β × dim β) block of Σ̂, but the top left (dim β × dim β) block of the inverse of Σ̂.

Proposition 3.2. Let Σ̂ be a consistent estimator of the asymptotic variance of
√
n(θ̂ − θ)

where the elements of θ are ordered as θ = [β′, γ′]′ and analogously for θ̂. Let the blocks of

its inverse be denoted as

Σ̂−1 =

[
[Σ̂−1]ββ [Σ̂−1]βγ

[Σ̂−1]′βγ [Σ̂−1]γγ

]

with [Σ̂−1]ββ ∈ Rdimβ×dimβ, [Σ̂−1]βγ ∈ Rdimβ×dim γ, and [Σ̂−1]γγ ∈ Rdim γ×dim γ.

18This is also a maintained assumption in Dufour and Taamouti (2005), as A being singular is unlikely.
See Dufour and Taamouti (2007) for singular A.

19I discuss a rule-of-thumb way to form a grid for nonlinear parameters in Section 3.3.
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Then the partial non-robust Wald confidence set CSN(γ) can be written as {β : β′Aβ +

2b′β + c ≤ 0} where

A = [Σ̂−1]ββ

b = [Σ̂−1]βγ(γ − γ̂)− [Σ̂−1]βββ̂

c = β̂′[Σ̂−1]βββ̂ − 2β̂′[Σ̂−1]βγ(γ − γ̂) + (γ − γ̂)′[Σ̂−1]γγ(γ − γ̂)− χ2
1−α(dim θ)/n.

Proof. The results is a rearrangement of the inequality (θ̂− θ)′Σ̂n(θ̂− θ) ≤ χ2
1−α(dim θ).

3.2 Checking inclusion of confidence sets

The first step of the two-step procedure requires us to check CSP ⊆ CSN . The Wald

confidence set CSN is an ellipsoid. On the other hand, the robust (preliminary) confidence

set CSP does not have a known shape in general. Consequently, without any structures, one

would resort to a grid search over CSP to check CSP ⊆ CSN , which can be computationally

expensive, or might not detect a non-inclusion if the grid is too coarse.

Proposition 3.1 provided a condition under which CSP (γ) takes a known form, namely

ellipsoid. Then the problem becomes checking whether an ellipsoid CSP (γ) is included in

another ellipsoid CSN(γ) for all γ. The following proposition provides a feasible method to

check the inclusion, even when the centers of the ellipsoids do not coincide.20

Proposition 3.3. Let CSP (γ) and CSN(γ) be two ellipsoids in Rk represented by

CSP (γ) = {x ∈ Rk : x′APx+ 2b′Px+ cP ≤ 0}

CSN(γ) = {x ∈ Rk : x′ANx+ 2b′Nx+ cN ≤ 0}.

where AP , AN ∈ Rk×k, bP , bN ∈ Rk, cP , cN ∈ R. Define a function ϕ : R→ R by

ϕ(t) = λmin

(
t

[
AP bP

b′P cP

]
−

[
AN bN

b′N cN

])

where λminM denotes the smallest eigenvalue for a matrix M . Then ϕ is well-defined and

concave. Suppose CSP (γ) ̸= ∅. Then CSP (γ) ⊆ CSN(γ) if and only if there exists t ≥ 0

such that ϕ(t) ≥ 0.

20When two ellipsoids share the same center, then it is sufficient to check whether a matrix is positive
semidefinite; suppose we have two ellipsoids represented by E1 = {x : (x − x0)

′A1(x − x0) ≤ 1} and
E2 = {x : (x− x0)

′A2(x− x0) ≤ 1}. Then E1 ⊆ E2 iff A1 −A2 is positive semidefinite.

17



Proof. The function ϕ is well-defined since the matrix

M(t) = t

[
AP bP

b′P cP

]
−

[
AN bN

b′N cN

]

is symmetric for all t ∈ R. It is concave because it is the composition of an affine function

t 7→M(t) and a concave function M 7→ λminM .

The S-lemma (see e.g., Boyd and Vandenberghe, 2004) shows that CSP (γ) ⊆ CSN(γ)

if and only if there exists t ≥ 0 such that M(t) is positive semidefinite. The result follows

since M(t) is positive semidefinite if and only if λminM(t) ≥ 0.

Since ϕ is a single variable concave function, it is easy to check the condition “ϕ attains a

non-negative value on [0,∞)”; for example, first check whether ϕ(0) ≥ 0. If that is the case,

then the condition holds. If not, and if ϕ is decreasing at 0, then the condition does not hold.

Otherwise, apply gradient ascent until ϕ takes a positive value (in which case we conclude

that the condition holds) or arrives at the global maximum. If the global maximum is non-

negative, then the condition holds. If the global maximum is negative, then the condition

does not hold. The only case in which the procedure fails is when ϕ(t) increases but does

not hit zero as t → ∞.21 In practice, one can try finding the maximum of ϕ within a large

enough bounded interval that the machine can handle, say [0, 1016].

Remarks on dimensionality reduction by Proposition 3.1 pertains here as well; exploiting

the structure under the assumptions, checking CSP ⊆ CSN no longer requires a grid search

on CSP of dimension dim θ, but only of dim γ.

3.3 The algorithm for two-step confidence set

I summarize the algorithm here using the previous results under Assumptions 1 and 2, and

then discuss a few details regarding the algorithm.

1. Obtain the BLP estimate θ̂ as well as the estimate Σ̂ for the asymptotic variance of
√
n(θ̂ − θ) (under homoscedasticity).

2. Choose the bound of distortion ζ, say 0.05, and set a = χ2
1−α(dim θ)/χ2

1−α−ζ(dim θ)−1.

3. Form a grid Γ̃ in the parameter space for γ.

21This may happen in the most general setting; λmin

(
t

[
0 0
0 1

]
−
[
0 −1
−1 0

])
is always negative while

approaching zero as t→∞. However, it is not clear whether such a case may arise in my setting, in which
we have restrictions such as A1 and A2 must be positive definite.
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4. Set a weak instruments indicator variable, say weakiv, as false.

5. For each grid point γ do the following:

(a) Compute δ(γ) = [δ1,1(γ; s1, p1, x1), . . . δJ,T (γ; sT , pT , xT )]
′ ∈ RJ×T .

(b) Obtain CSR(γ) using Proposition 3.1 and store it.

(c) If weakiv is true, then continue to the next value of γ.

(d) Obtain CSP (γ) using Proposition 3.1.

(e) If CSP (γ) is not bounded (using Proposition A.1), then set weakiv as true and

continue to the next value of γ.

(f) If CSP (γ) ̸⊆ CSN(γ) (using Proposition 3.3), then set weakiv as true.

6. If weakiv is true, then report CSR = {(β, γ) : β ∈ CSR(γ), γ ∈ Γ̃} as CS2. Otherwise,

report CSN as CS2.

Obtaining optimal instruments To ensure just-identification when there are more in-

strumental variables than parameters, one can apply a convenient method provided by Py-

BLP to obtain the optimal instruments; before Step 1, obtain the BLP estimate, and then use

it to calculate the optimal instruments.22 Then begin with Step 1 with the newly constructed

set of instruments.

Storing confidence sets At Step 5 (b), only the objects A, b, and c (as in Proposition

3.1) for each γ need to be stored in the memory, rather than the set of points that are in

CSR(γ), since A, b, and c fully determine CSR(γ).

Grid search over nonlinear parameters The algorithm still requires grid search over

nonlinear parameters γ, even though grid search over β is no longer present, which mirrors

similar roles taken by nonlinear and linear parameters in BLP estimation procedure, as

mentioned earlier. However, unlike the minimization task over γ as in BLP estimation,

where several methods have been studied extensively and are readily available in optimization

packages, research on effective and accurate grid search over a potentially large parameter

space is still growing.23

One rule of thumb we may consider is to form a grid slightly larger than the set {γ :

CSN(γ) ̸= ∅}, i.e., the projection of CSN on the space of nonlinear parameters, which can

22See ProblemResult.compute optimal instruments in PyBLP.
23Instead of a grid search, one could follow the approach suggested by Chen, Christensen, and Tamer

(2018) and use Monte Carlo draws from a quasi-posterior based on the robust test statistic.
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be analytically obtained by using Proposition A.1, since (non-partial) CSN is already an

ellipsoid. On that grid we can check whether CSP (γ) ⊆ CSN(γ) for all γ; if it is violated,

then say that the first step indicates weak identification (up to the choice of the denseness

of the grid), and then obtain CSR while sequentially enlarging the grid for γ as needed to

enclose CSR. Otherwise, if CSP (γ) ⊆ CSN(γ) on the grid (which was taken slightly large so

that it includes values of γ at which CSN(γ) is empty), then say that the first step indicates

strong identification, albeit with caution since there might still be a value of γ outside the

grid for which CSP (γ) ̸= ∅.

Nested logit model As in the BLP estimator for the nested logit model, the “nesting

parameter,” which is a nonlinear parameter, can be considered as a linear parameter when it

comes to computation. Using the notation by Berry (1994), consider the nested logit model

(omitting subscript t)

uij = x′
jβ + ξj + ζig + (1− σ)ϵij

where σ ∈ (0, 1] is the nesting parameter and g denotes the group j belongs to. The model

can be analytically inverted to yield

log sj − log s0 = x′
jβ + σ log sj|g + ξj,

where sj|g is the within-group market share of j. Then the algorithm can be applied without

a loop over γ after the following renaming: δjt ← log sg − log s0, θ ← [β′, σ]′, and xj ←
[x′

j, log sj|g]
′.

Application in transformation models The dimension reduction technique can be also

useful when applying the robust two-step inference to transformation models (Horowitz,

1998):

T (yi; γ) = x′
iβ + ui,

where yi, ui ∈ R and xi ∈ Rdimβ, and the function T is invertible and is parametrized by γ. In

this case, the inverse of T with respect to yi, i.e., T
−1(γ; yi), takes the role of δjt(γ; st, pt, xt).
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4 Monte Carlo simulations

In this section, I conduct Monte Carlo simulations to investigate the performance of the

two-step procedure equipped with the dimension reduction technique. I first set the data

generating process, and then conduct Monte Carlo simulations under both homoscedasticity

and heteroscedasticity. I use the same notation as in Section 2.1, while omitting the market

subscript t.

4.1 The data generating process

I vary the number of markets as T = 100, 200, 500 in the simulation exercises. In all cases,

there are J = 6 inside goods in each market. There are 6 firms in each market, each producing

one product. The indirect utility is specified as a logit model with a random coefficient on

the price, as

uij = 1− (3 + 0.5νij)pj + 1.5x1j + 1.5x2j + ξj + ϵij,

where x1j and x2j are drawn independently from the standard uniform distribution, νij fol-

lows the standard normal distribution,24 and ϵij follows the type-I extreme value distribution.

Consequently, the true parameters are β = [1,−3, 1.5, 1.5]′, α = −3 (which is part of β), and

γ = 0.5.

The marginal cost cij is determined by

cj = 2x1j + 2x2j + ρwj + ωj,

where wj is a cost shifter drawn from the standard uniform distribution. For homoscedastic

errors, the unobserved product heterogeneity ξj in the previous display and the unobserved

cost shifter ωj are drawn from a bivariate normal distribution such that each has variance

one, and the correlation coefficient between ξj and ωj is 0.9.

For heteroscedasticity, I multiply ξj with a factor of
√
2(1− wj). As wj is uniformly

distributed on [0, 1] and the original ξj has variance one, the new ξj has conditional variance

between 0 and 2, depending on the cost shifter.

The parameter ρ is set differently across simulations, in order to vary the degree of weak

identification; decreasing ρ reduces the correlation between the price and the cost shifter wj,

thereby leading to weak identification. This setting is also used by Conlon and Gortmaker

24In a typical empirical setting, the random component of the price coefficient is the exponential of some
random variable, to ensure that the price coefficient is negative for each individual. Instead, I take advantage
of the fact that 3 + 0.5νij is rarely negative; P (3 + 0.5νij < 0) ≈ 9.87× 10−10.
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(2020).

The endogenous market shares and prices, namely sj and pj, are generated by solving the

Bertrand-Nash price-setting game between firms. I use the Python package PyBLP (Conlon

and Gortmaker, 2020) to conduct simulation draws and to solve for the endogenous variables.

The excluded instruments I use are the cost shifter wj and some simple BLP instruments,

namely the sums of rival products’ characteristics (within the market):

zj =

[
1, x1j, x2j, wj,

∑
k ̸=j

x1k,
∑
k ̸=j

x2k

]′
.

Since we have five parameters and six (included and excluded) instruments, I use PyBLP to

compute the approximate optimal instruments and call the resulting vector of instruments

zj, thereby reducing the dimension of zj to five.

4.2 Confidence sets under homoscedastic errors

Table 1: Coverage of confidence sets under homoscedasticity

T = 100 T = 200 T = 500

ρ 1 3 5 1 3 5 1 3 5

corr(pj, wj) 0.217 0.558 0.747 0.216 0.548 0.745 0.216 0.556 0.745
Weak IV 1.000 1.000 0.944 1.000 1.000 0.996 1.000 1.000 0.138

Coverage of CSN 0.820 0.864 0.891 0.844 0.888 0.891 0.865 0.880 0.909
Coverage of CSR 0.900 0.900 0.894 0.911 0.905 0.890 0.918 0.881 0.910
Coverage of CS2 0.900 0.900 0.894 0.911 0.905 0.890 0.918 0.881 0.907

Length of CSα,N 1.990 1.105 0.669 1.441 0.892 0.606 0.924 0.523 0.355
Length of CSα,R 2.840 1.226 0.719 1.665 0.921 0.619 0.973 0.550 0.359

Length of CSγ,N 0.679 0.291 0.139 0.512 0.251 0.139 0.322 0.149 0.079
Length of CSγ,R 1.010 0.355 0.153 0.655 0.265 0.143 0.357 0.152 0.080

Notes: corr(pj , wj) is the average correlation between the price and the cost shifter, across simulation
draws. Weak IV denotes the sample probability that the first step indicates weak identification. Cover-
age of CS denotes the sample probability of θ ∈ CS, i.e., the coverage probability. Length of CSα and
Length of CSγ are the average lengths of the projection confidence intervals for α and γ, respectively.
Each column is obtained using 1,000 simulation draws.

Table 1 tabulates simulated behaviors of confidence sets CSN , CSR, and CS2, when

the structural errors are homoscedastic. The nominal coverage rate is set to 0.90, and

the coverage distortion bound ζ is set to 0.10. Overall, the robust confidence set CSR

has coverage probabilities around the nominal coverage probability, as expected, for all ρ
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considered in the exercise. The robust confidence set behaves well even for a fairly small T .

On the other hand, the non-robust confidence set CSN shows slight under-coverage for low

values of ρ, more so as T gets smaller.

The first step tends to indicate strong identification when T = 500 and ρ = 5, and

weak identification otherwise. One thing to note is that the procedure indicates strong

identification only when T is large, even at the same level of ρ (and hence with the same

correlation between pj and wj). This seems to be due to CSN being less stable with small

T , which in turn affects whether the first-step set inclusion holds.

As for the two-step confidence set CS2, it performs well in all simulation cases, attaining

the coverage probability around 0.90. This simulation result is favorable, especially consid-

ering the theoretically guaranteed lower bound of 0.80. This happens because the first step

correctly forces CS2 to discard CSN and use CSR instead when CSN performs poorly.

If correct coverage probability is the only concern, then one could have just used CSR

to begin with, as it already attains the correct coverage probability. However, one benefit of

using the two-step procedure is that it gives an indicator of weak identification, analogously

to the F -test in the linear instrumental variables models. Another potential benefit can be

found in the lower part of the table. The lengths of projections of CSN are smaller than

those of CSR in all cases. Due to this, one might find it desirable to use CSN when the first

step indicates that it is “safe” to use CSN .

Nonetheless, the results suggest that there is little cost to using CSR (i.e., a slightly

larger confidence set under strong identification), while the benefit is large (i.e., the correct

coverage probability as compared to that of CSN under weak identification). Therefore one

might as well consider using CSR without the two-step procedure, in spirit of Keane and

Neal (2023). Even in that case, the dimension reduction technique provided in Proposition

3.1 remains useful.

4.3 Confidence sets under heteroscedastic errors

Table 2 tabulates simulated behaviors of confidence sets CSN , CSR, CS2, and CSH . Here,

CSH is the Wald confidence set obtained by inverting the Wald test statistic, like CSN ,

but using the heteroscedasticity-robust variance estimator; that is, CSH is robust against

heteroscedasticity but not robust against weak identification.25

Even though the true data is generated under heteroscedasticity, the weak-identification

robust (but not robust against heteroscedasticity) confidence set CSR does not suffer a

25A confidence set that is robust against both heteroscedasticity and weak identification would be an ideal
benchmark. However, I do not simulate it due to its extensive computational cost. See Figure 1 for such
confidence set plotted based on a single simulation draw.
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Table 2: Coverage of confidence sets under heteroscedasticity

T = 100 T = 200 T = 500

ρ 1 3 5 1 3 5 1 3 5

corr(pj, wj) 0.218 0.555 0.745 0.219 0.557 0.745 0.217 0.556 0.745
Weak IV 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.272

Coverage of CSN 0.832 0.854 0.858 0.813 0.869 0.883 0.833 0.872 0.883
Coverage of CSR 0.914 0.885 0.870 0.887 0.895 0.885 0.887 0.888 0.885
Coverage of CS2 0.914 0.885 0.870 0.887 0.895 0.885 0.887 0.888 0.885
Coverage of CSH 0.748 0.822 0.860 0.756 0.847 0.886 0.815 0.873 0.880

Length of CSα,N 2.148 1.285 0.887 1.488 0.878 0.600 0.920 0.533 0.348
Length of CSα,R 2.484 1.363 0.924 1.655 0.905 0.614 0.964 0.540 0.353
Length of CSα,2 2.484 1.363 0.924 1.655 0.905 0.614 0.964 0.540 0.348
Length of CSα,H 2.174 1.315 0.904 1.512 0.896 0.614 0.935 0.546 0.355

Length of CSγ,N 0.740 0.370 0.208 0.531 0.249 0.138 0.324 0.147 0.077
Length of CSγ,R 0.862 0.416 0.219 0.646 0.261 0.142 0.354 0.149 0.079
Length of CSγ,2 0.862 0.416 0.219 0.646 0.261 0.142 0.354 0.149 0.077
Length of CSγ,H 0.739 0.367 0.204 0.533 0.246 0.136 0.325 0.146 0.076

Notes: See Table 1 for a description of terms “corr”, “coverage”, and “length.” “Weak IV” is the
sample probability that the first step indicates weak identification, under the assumption that the errors
are homoscedastic. Likewise, CSN , CSR, and CS2 are obtained based on the assumption that the errors
are homoscedastic. CSH is the Wald confidence set that is robust against heteroscedasticity while not
robust against weak identification.

severe distortion in coverage probability, although slight under-coverage is present. CSN ,

which is not robust against both heteroscedasticity and weak identification, shows slight

under-coverage, more so for smaller T and lower ρ. Heteroscedasticity-robust (but not weak-

identification robust) confidence set CSH exhibits severe under-coverage for smaller T and

lower ρ; although CSH is supposed to correct CSN to be robust against heteroscedasticity,

its performance appears worse than CSN under weak identification. This might need further

research to understand the cause of the particularly poor performance of heteroscedasticity-

robust estimator under weak identification. Still, the simulation result hints that addressing

weak identification might be more important than addressing heteroscedasticity when there

is a concern of potential weak identification.

Figure 1 depicts, for each of three scenarios, a simulation draw of each of three confidence

sets: CS2 under the homoscedasticity assumption (solid line), CS2 without the homoscedas-

ticity assumption (dashed line), and CSH (dotted line). Let us call the first two confidence

sets CShom
2 and CShet

2 respectively. Among the three confidence sets, CShet
2 is designed to

be robust against both heteroscedasticity and weak identification, and therefore serves as a
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(c) T = 500, ρ = 5

Figure 1: Confidence sets under heteroscedasticity

Notes: In each panel, a confidence set with a solid line is CS2 obtained using the dimension reduction
technique, under the assumption that errors are homoscedastic. A confidence set with a dashed line is CS2

obtained by grid search over θ, without assuming that errors are homoscedastic. A confidence set with a
dotted line is CSH , i.e., the confidence set that is robust against heteroscedasticity while not robust against
weak identification. All the confidence sets are projected on the α–γ plane. In panel (c), the dotted line and
the dashed line overlap. The panels have different scales.
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benchmark.

The confidence sets almost overlap under strong identification (T = 500, ρ = 5). On the

other hand, under weak identification (T = 100, ρ = 1), the CShom
2 and CSH deviate from

CShet
2 . Between CShom

2 and CSH , the latter seems particularly worse in capturing the overall

shape of CShet
2 , since CSH is bound to be an ellipsoid in every direction.26 On the other hand,

CShom
2 , which takes advantage of dimension reduction, seems to approximate the shape and

the location of CShet
2 , which requires a grid search over the entire dimension and hence can

be computationally prohibitive when the dimensionality is large and the grid is fine. This

visual inspection suggests two potential uses for the analytic representation technique: (i)

as an approximation for the fully robust confidence set CShet
2 , or (ii) as guidance on the

location and the breadth of the grid for computing CShet
2 .

5 Conclusion

In this paper, in light of concerns about instrumental variables being weak in estimating

discrete choice demand models (BLP-style models), I show how one can adapt a recent

econometric method proposed by Andrews (2018) that is robust to weak identification. As

the procedure involves computationally intensive grid search especially when the number of

parameters is large, I propose a computationally feasible method by reducing the dimension-

ality of the grid search under two assumptions, namely just-identification and homoscedas-

ticity. The dimension reduction is done by deriving an analytic representation of the robust

confidence sets in the space of linear parameters and by providing a fast method to check an

inclusion relationship between two ellipsoids. As a result, the dimensionality of the required

grid is reduced from the total number of parameters to the number of nonlinear parameters.

I conduct Monte Carlo simulations to check the performance of the two-step procedure

equipped with my dimension reduction technique. The coverage probability of the two-step

confidence set is around the pre-specified level under both strong and weak identification,

whereas the non-robust confidence set shows under-coverage when instruments are weak.

Another set of Monte Carlo simulations shows that, although the technique is developed

under homoscedasticity assumption, the resulting confidence set still performs well when the

true structural errors are set to be heteroscedastic.

26On the other hand, CShom
2 is an ellipsoid only after fixing γ. In the Figure 1, this shape restriction

presents itself in that the projection confidence set for α is an interval for each γ.
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Appendix

A Properties of quadric sets

Proposition A.1 (Dufour and Taamouti, 2005). Suppose C = {β : β′Aβ + 2b′β + c ≤ 0}
with nonsingular A.

1. (Boundedness check) C is bounded iff A is positive definite.

2. (Projection confidence interval) Let w ∈ Rdimβ \ {0}, and Cw be the projection of C:

Cw = {w′β : β ∈ C}.

Let d = b′A−1b− c and β̃ = −A−1b.

(a) Case 1: if A is positive definite and

� d ≥ 0, then

Cw =
[
w′β̃ −

√
d(w′A−1w), w′β̃ +

√
d(w′A−1w)

]
.

� d < 0, then Cw is empty.

(b) Case 2: if A has exactly one negative eigenvalue and

� w′A−1w < 0 and d < 0, then

Cw =
(
−∞, w′β̃ −

√
d(w′A−1w)

]
∪
[
w′β̃ +

√
d(w′A−1w),∞

)
.

� w′A−1w = 0 and d < 0, then Cw = R \ {w′β̃}.

� otherwise, then Cw = R.

(c) Case 3: if A has more than one negative eigenvalues, then Cw = R.
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