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Abstract

Informational frictions in centralized school choice can influence distributional out-
comes and welfare. We model school applications, allowing for limited consideration
sets and mistaken beliefs about admission chances. Quasi-experimental variation and
various aspects of rank-ordered lists are utilized for identification. We then assess the
effects of school choice in New York City on racial segregation, equity in student welfare,
and matching stability. We find that while school choice enhances welfare across races,
limited consideration compromises these gains, particularly for Black and Hispanic stu-
dents. A counterfactual policy with personalized school recommendations could recover
20–36% of the welfare losses.
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1 Introduction
School choice policies aim to alleviate the effects of residential locations on educational oppor-
tunities by enabling broader access to schools. A notable approach to school choice involves
the use of centralized assignment mechanisms. These mechanisms are often motivated by
theoretical results that target desirable properties such as stability or strategy-proofness.1

However, their real-world impacts remain contested. The theoretical results depend on the
assumption that applicants make choices with full knowledge of all available options, which
is questionable in many centralized school choice environments with numerous differentiated
options. Furthermore, informational frictions may vary across demographic groups, poten-
tially having significant distributional impacts. However, while there is growing evidence
documenting the presence of these frictions in school choice settings,2 building and identi-
fying a model of school applications that incorporates both limited awareness of available
options and two-sided matching remains less understood. This is despite its importance
for distinguishing the impacts of student preferences from information frictions on racial
segregation and equity, accurately measuring the welfare net of confounding effects from
optimization frictions, assessing the satisfaction of theoretical targets in practice, and eval-
uating counterfactual policies, among other considerations.

The centralized high school choice process in New York City (NYC) is one environment
where informational frictions can be significant, with more than 700 high school programs
in NYC. Guided by the empirical evidence of frictions we find in NYC, we construct a
model that allows for limited awareness of school options as well as incorrect beliefs about
assignment chances.3 We demonstrate that the model can be estimated using data commonly
available in school choice settings, namely rank-ordered choice data, along with an instrument
that shifts awareness but not preferences. We support this claim by providing sufficient
conditions for nonparametric identification. In our NYC school choice environment, we
utilize the alphabetical ordering of schools in the NYC high school directory as an instrument.

Our results show that Asian and White students’ consideration sets are more aligned
with their preferred schools compared to those of Black and Hispanic students. Students’
preferences, net of the confounding effects of limited information, act to integrate schools. In
contrast, informational frictions substantially suppress student welfare, particularly for Black
and Hispanic students. These findings underscore the importance of separating preference

1See, e.g., Gale and Shapley (1962) and Abdulkadiroğlu and Sönmez (2003).
2See, e.g., Corcoran, Jennings, Cohodes, and Sattin-Bajaj (2018), and Arteaga, Kapor, Neilson, and

Zimmerman (2022).
3Allowing for subject beliefs about assignment chances and nontruthful behavior may be crucial given

the complexity of NYC’s Deferred Acceptance (DA) mechanism (Calsamiglia, Haeringer, and Klijn, 2010;
Hassidim, Marciano, Romm, and Shorrer, 2017).
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and information frictions, offering guidance for designing policy interventions. Building on
these insights, we propose personalized school recommendations based on the estimated
preferences and consideration probabilities. Counterfactual simulations predict that such
information interventions will recover 20–36% of welfare losses.

Our paper begins by presenting descriptive evidence suggesting frictions in application
behavior and the presence of racial disparities. Our findings indicate that applicants take
admission chances into account even under situations where such behavior is weakly dom-
inated. We further document that students are significantly less likely to apply to the
schools appearing on the later pages of NYC’s school directory—even though schools are
alphabetically ordered—suggesting substantial informational frictions. These patterns are
more pronounced for Black and Hispanic students, whose neighborhood schools tend to be
lower-performing and less selective.

To accommodate these observations, our model of students’ application behavior incor-
porates elements of optimization friction. Such a model is particularly important in our
context. A model without such frictions would force the researcher to interpret any observed
behavior under school choice as optimal, potentially biasing the results in favor of school
choice. Furthermore, a frictionless model attributes differences in the choice patterns across
demographic groups to differences in preferences when, in fact, they may be caused by dif-
ferences in frictions. In contrast, a model encompassing frictions enables us to disentangle
the contributions of preferences and frictions and to provide guidance on possible policy
interventions.

Specifically, our model allows each applicant to consider only a limited set of the school
options4 and have incorrect beliefs about equilibrium assignment chances. An applicant may
fail to consider a school because she is unaware of it or feels she can never be admitted. Even
if she does consider a school, she may have incorrect beliefs about how her rank-ordering of
schools can affect her assignment probabilities.

Rich information in students’ rank-ordered lists, combined with exogenous variation in
consideration, enables the identification of the model using observational data. For example,
while a lack of consideration may affect which schools are listed, it cannot affect where a listed
school will be ranked. Regarding the exogenous variation, we argue that certain observables,
such as the positioning of schools in the NYC directory, can affect the consideration set but
not preferences.5 Another assumption that assists identification is that some students have

4To be precise, some schools host multiple programs, and these programs are the primary units of analysis
for most of our results. We will distinguish between schools and their programs when such distinction becomes
necessary.

5Relatedly, Martin and Yurukoglu (2017) use local channel positions as exogenous variation that shifts
channel viewership but are uncorrelated with the local political inclinations. A number of previous research
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a set of schools (e.g., less selective schools close to home) that they will surely consider. We
formalize our intuitive identification strategy by establishing sufficient conditions for non-
parametric identification using the type of rank-ordered choice data typically available from
centralized school choice systems, with an appropriate instrument. These conditions clarify
the sources of identification and the limited role played by functional form assumptions.

Estimates reveal racial differences in both preference and consideration patterns, with
the differences in consideration being more pronounced. Moreover, compared to Asian and
White students, Black and Hispanic students’ consideration sets are less aligned with their
preferences. For instance, they are significantly more likely to consider less selective and
lower-performing schools, even though their preferences towards them are comparable to
those of Asian and White students. Across all races, students’ reporting strategies are
estimated to be approximately consistent with truthful reporting among the considered pro-
grams.

Using our estimated model, we quantify racial integration and equity in school assign-
ments. The results indicate that school choice modestly enhances racial integration, reducing
the isolation index of Black students by about 7.7 percentage points. Student preferences
work to integrate races, while limited consideration has mixed impacts across races. Further-
more, school choice also significantly boosts welfare across all racial groups; the proportion
of students matched to one of their top five preferred school programs increases from about
3% under neighborhood matching to around 28% under school choice. The improvement is
larger for Black and Hispanic students. However, limited consideration substantially sup-
presses the welfare gains. If students considered all schools, students would be about twice
as likely to be matched to one of their top five preferred school programs, with the greatest
potential gains for Black and Hispanic students. Schools’ admissions priorities and screen-
ing policies segregate races and tend to place Asian and White students in their preferred
schools.

Recognizing the significant welfare losses resulting from limited consideration, we propose
using our model to design targeted information interventions.6 These interventions utilize
the estimated preferences and consideration sets to recommend 30 programs to each student.
Some of these interventions show significant promise. The most effective one, which recom-
mends programs with the highest predicted utility but low predicted consideration chances,
is estimated to address between 20–36% of the welfare losses.

We also measure matching stability by quantifying the prevalence of justified envy, a

considered the effects of the positioning of items in online settings; see, e.g., Feng, Bhargava, and Pennock
(2007), Koulayev (2014), Ursu (2018).

6Allende, Gallego, and Neilson (2019) also use the estimated model to study alternative designs of their
information intervention.
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situation where a student and a school program prefer each other over their current matches.
Our estimates indicate that 73% of students experience justified envy toward at least one
school. On average, however, students view only around three school programs with justified
envy, a relatively small number compared to around 750 available programs.

Relation to the Literature We contribute to the literature that estimates a model of
school applications with limited awareness. Ajayi and Sidibe (2022) study high school choice
in Ghana based on a sequential search model, documenting welfare loss from information
frictions and estimating their model with surveys on beliefs about admission chances. A
recent working paper by Agte, Allende, Kapor, Neilson, and Ochoa (2024) examines pri-
mary school assignments in Chile. Using a set of surveys and interventions, they focus on
unveiling the search process, assessing the roles of limited awareness, beliefs about school
characteristics and admission chances, and search costs, assuming a sequential search model.
We complement these studies by using and demonstrating a different approach that does not
rely on surveys or interventions but rather only on observational data, coupled with a shifter
of information excluded from preferences. We also support our estimation strategy with
nonparametric identification results. Also, our model of consideration sets is an alternative-
specific consideration model (Manski, 1977; Swait and Ben-Akiva, 1987), not a sequential
search model. We do not interpret our consideration model as counterfactual-invariant, but
rather focus on the impacts of status quo informational frictions on distributional aspects
and the satisfaction of theoretical targets.

Our identification results relate to those of Agarwal and Somaini (2022), who examine
the identification of preferences and latent choice sets. They consider the case of single-unit
demand with the presence of two types of instruments, one that affects preferences but not
the choice sets and the other that affects choice sets but not preferences. In contrast, in our
empirical setting, while only the latter kind of instruments are present,7 students can list
and rank-order multiple schools, which provides additional identifying variation. Our model
also distinguishes between consideration and nondegenerate beliefs given consideration. In
addition to one instrument, our nonparametric identification results also depend on the pres-
ence of a special regressor.8 Our identification strategy builds upon Agarwal and Somaini
(2018), who provide sufficient conditions for nonparametric identification of preferences as-
suming full consideration and holding fixed a mode of beliefs in a centralized school choice
setting.9 Our paper also relates to the broader literature on the estimation and identification

7As a supplementary nonparametric identification result, we discuss the case where both types of instru-
ments are present (Proposition C.4), unlike our empirical setting.

8The results depend on a special regressor for utility and one for consideration. These regressors may
coincide.

9The approaches used in nonparametric identification results are further related to, for example, Thomp-
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of discrete choice models with limited consideration,10 with one important difference being
that we also allow and estimate potentially incorrect beliefs about admission chances, which
is important in two-sided matching environments such as school choice.

Other studies have documented the importance of limited information about schools.
Using surveys and informational interventions, Arteaga, Kapor, Neilson, and Zimmerman
(2022) show that the search frictions are significant in their school choice setting and that
search behavior is affected by their (updated) beliefs about admission chances. Corcoran,
Jennings, Cohodes, and Sattin-Bajaj (2018) provide evidence that information intervention
affects application behavior in the NYC high school application procedure. Narita (2016)
shows that students in NYC modify their orderings of schools during the re-application
process; many applicants self-report that these changes arise from evolving preferences or
updated information. Allende, Gallego, and Neilson (2019) estimate a school choice model
featuring imperfect information about the school attributes, highlighting equilibrium effects.
Campos (2024) finds that information spillovers between parents are important. Informa-
tional frictions are also important in other environments of school or college applications
(e.g., Hastings and Weinstein, 2008; Hoxby and Turner, 2013; Ajayi, Friedman, and Lucas,
2017; Dynarski, Libassi, Michelmore, and Owen, 2021). Our contribution is to demonstrate
racial disparities in information in NYC school choice setting, to incorporate limited aware-
ness into a model of school applications while allowing for incorrect beliefs, and to identify
the model using typical data from centralized school choice settings with presence of an
instrument.

We also contribute to the literature by disentangling the role that limited considera-
tion plays in racial segregation and inequality in school assignments from the role played
by students’ preferences. Relatedly, Ajayi and Sidibe (2022) estimate the welfare loss due
to information frictions in a centralized school choice system in Ghana and that the loss is
concentrated on low-ability students. Other studies have empirically examined the contribu-
tions of various factors to equity or segregation under centralized school choice procedures
(Kessel and Olme, 2018; Laverde, 2020; Oosterbeek, Sóvágó, and Van Der Klaauw, 2021;
Akbarpour, Kapor, Neilson, Van Dijk, and Zimmerman, 2022; Hahm and Park, 2022; Sar-
tain and Barrow, 2022; Idoux, 2023; Park and Hahm, 2023). Calsamiglia, Martínez-Mora,
and Miralles (2021) theoretically examine the impact of matching algorithms on segregation.

son (1989), Bresnahan and Reiss (1991), Lewbel (2000), Berry, Gandhi, and Haile (2013), and Berry and
Haile (2024).

10See, e.g., Goeree (2008), Conlon and Mortimer (2013), Gaynor, Propper, and Seiler (2016), Hortaçsu,
Madanizadeh, and Puller (2017), Abaluck and Adams-Prassl (2021), Barseghyan, Coughlin, Molinari, and
Teitelbaum (2021a), Barseghyan, Molinari, and Thirkettle (2021b), and Kawaguchi, Uetake, and Watanabe
(2021).
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There have been studies that examine the distributional impacts of school choice in other
contexts (e.g., Epple and Romano, 1998; Hsieh and Urquiola, 2006; Bifulco and Ladd, 2007;
Neilson, 2013; Altonji, Huang, and Taber, 2015; Hom, 2018; Avery and Pathak, 2021).

We further contribute to a growing literature that allows for subjective beliefs about
admission chances in school choice settings. We additionally allow for imperfect awareness
of school options. Kapor, Neilson, and Zimmerman (2020) estimate a model that allows
for subjective beliefs using survey data on perceived admission chances and data on rank-
ordered lists. Our model of beliefs is based on theirs, and we complement their work by
providing results on identification that use data on observed choices and instruments rather
than survey data. Relatedly, Agarwal and Somaini (2018), Luflade (2018), and Calsamiglia,
Fu, and Güell (2020) estimate preferences and potentially incorrect beliefs with observed
choice data without surveys.11 Some studies propose strategies for estimating preferences
while allowing for mistaken beliefs under nontruthful mechanism (He, 2017; Hwang, 2017)
and while allowing for nontruthful behavior under (approximately) truthful mechanisms
(Artemov, Che, and He, 2017; Fack, Grenet, and He, 2019; Che, Hahm, and He, 2020;
Larroucau and Rios, 2020; Idoux, 2023).12 Our findings indicate that, while students may
drop schools from their submitted reports because of admission chances that are perceived
to be negligible (even when the list length constraint is not binding), they rarely place a
lower-utility school above a higher-utility school. These findings are consistent with the
literature that finds or assumes that nontruthful ordering is less common than dropping an
unlikely school (Fack, Grenet, and He, 2019; Fabre, Larroucau, Martınez, Neilson, and Rios,
2021; Shorrer and Sóvágó, 2022).

We also measure matching stability and the influences of various factors on student wel-
fare. Luflade (2018) analyzes the value of information about admission chances on welfare.
This paper measures the effect of limited consideration sets and the deviations from truth-
ful reporting on welfare.13 Other studies have empirically investigated student welfare or
matching stability (Narita, 2016; Abdulkadiroğlu, Agarwal, and Pathak, 2017; He, 2017;
Hwang, 2017; Agarwal and Somaini, 2018; Che and Tercieux, 2019; Abdulkadiroğlu, Che,
Pathak, Roth, and Tercieux, 2020; Kapor, Neilson, and Zimmerman, 2020; Calsamiglia, Fu,
and Güell, 2020). Our paper ensures that frictions in awareness and in the assessments
of admission chances are not conflated with utilities. Thus, our evaluation of welfare and
stability reflects preferences net of the influences from the frictions.

11More broadly, Aguirregabiria (2021) studies the identification of firms’ preferences and beliefs about
the competitors’ behavior using data on observed actions.

12Abdulkadiroğlu, Agarwal, and Pathak (2017) and Che and Tercieux (2019) assume weak versions of the
truthtelling assumption.

13As discussed above, Ajayi and Sidibe (2022) measure the welfare loss due to limited search.
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Table 1: Characteristics of Students by Ethnicity

Asian Black Hispanic White Totala

Proportion in the sample 16.1% 26.9% 40.5% 15.0% 98.4%

Female 47.8% 48.8% 48.4% 48.2% 48.4%
English Language Learner 13.5% 2.7% 18.2% 6.4% 11.3%
Subsidized lunch 69.5% 76.4% 80.5% 40.2% 71.3%
Students with disabilities 7.4% 25.0% 24.8% 17.3% 20.8%
Mean neighborhood income ($) 58553.0 49469.1 47624.1 73686.9 54119.7
Mean distance to schools (miles) 9.12 8.99 8.47 10.92 9.09

Home boroughs
Bronx 6.4% 25.9% 36.2% 6.0% 23.7%
Brooklyn 29.2% 42.5% 20.3% 33.5% 29.8%
Manhattan 7.5% 8.8% 12.7% 12.8% 10.9%
Queens 52.9% 19.4% 26.5% 25.5% 29.0%
Staten Island 4.0% 3.4% 4.2% 22.1% 6.7%

State Reading Category
High 42.7% 16.7% 16.3% 43.7% 25.1%
Middle 50.6% 68.4% 67.0% 50.4% 62.0%
Low 6.7% 14.9% 16.7% 5.8% 12.8%

Mean report length 7.2 7.5 7.2 5.6 7.1

Notes: Except for the proportion in the sample, all the percentage terms represent
the proportions of the relevant categories within each ethnicity. See Appendix D
for details about the construction of the table.

a 1.6% of students are multi-racial or Native American.

2 Overview of New York City’s High School Choice

2.1 The Context

The NYC public high school choice system annually matches about 80,000 students to cover
700 public high school programs. The system uses the following centralized procedure:14

(1) applicants submit rankings for up to 12 school programs; (2) school programs rank ap-
plicants based on admissions priority groups, screening policies, and/or lotteries; (3) the
Student-Proposing DA algorithm is used to assign students to schools using the rankings.
The matching procedure in NYC creates incentives for the applicants to deviate from truth-
fully reporting their preferences, due to the list length constraint and the presence of the
aftermarket (Section 2.2).

Characteristics of our student sample are summarized in Table 1.15 The district has
many minority students and low-income students. Of the students in the sample, 40.5%

14We focus on the applications towards traditional public high schools, excluding specialized high schools
or charter schools. Approximately 70% of NYC high school students attend traditional public high schools.
See Appendix B for details about NYC’s matching algorithm.

15For discussions of the data and the sample, refer to Section 3.1.

7



Table 2: Characteristics of Schools and Programs by Borough

Bronx Brooklyn Manhattan Queens Staten Island Total

Schools

Graduation rate 0.68 (0.15) 0.74 (0.14) 0.79 (0.16) 0.79 (0.16) 0.78 (0.10) 0.75 (0.15)
College/career rate 0.49 (0.15) 0.51 (0.17) 0.61 (0.19) 0.64 (0.19) 0.65 (0.15) 0.56 (0.18)
Average grade 8 math (std.) −0.50 (0.58) −0.19 (0.81) 0.35 (1.17) 0.50 (1.11) 0.55 (0.64) 0.00 (1.00)
Proportion White 0.03 (0.03) 0.07 (0.12) 0.10 (0.15) 0.11 (0.11) 0.43 (0.21) 0.08 (0.13)
Proportion Black 0.27 (0.12) 0.55 (0.28) 0.26 (0.15) 0.28 (0.26) 0.17 (0.12) 0.35 (0.24)
Proportion Asian 0.03 (0.03) 0.07 (0.10) 0.09 (0.12) 0.22 (0.15) 0.08 (0.03) 0.09 (0.12)
Proportion Hispanic 0.65 (0.13) 0.29 (0.22) 0.52 (0.21) 0.35 (0.21) 0.28 (0.12) 0.45 (0.24)
9th grade school seats 115.51 (71.19) 157.98 (145.20) 133.98 (84.56) 187.08 (141.38) 304.33 (217.18) 149.25 (121.12)

Number of schools 116 122 105 79 9 431

Programs

9th grade program seats 88.20 (36.60) 84.60 (71.29) 98.38 (58.91) 96.59 (52.50) 62.25 (27.55) 89.34 (57.18)

Number of programs: All 155 240 146 172 50 763

By admission methods

Uses admissions priority groups 123 154 87 94 42 500
Uses screening 68 139 100 115 37 459
Uses lottery only 2 9 5 3 0 19

By interest area

Arts 25 47 26 20 7 125
STEM 35 59 27 37 10 168

Notes : The standard deviations in each respective borough or in NYC are given in parentheses. Standardized values are indicated by
(std.). College/career rate indicates the proportion of students who graduated from high school four years after entering 9th grade and
then enrolled in college, a vocational program, or a public service program within six months of graduation. All schools and programs
have equal weight regardless of their number of seats. The numbers under By admission methods and By interest area denote the
number of programs. The sample excludes the nine specialized high schools. See Supplemental Material A.4 for our definition of
interest area. Uses lottery only are the programs that use admission lotteries and neither screening nor admission priority groups.

are Hispanic, 26.9% are Black, 16.1% are Asian, and 15.0% are White.16 71.3% of the
students are eligible for free or reduced-price lunch. The table also (partially) demonstrates
the housing racial segregation in NYC.

The school and program characteristics are summarized in Table 2 by borough. Schools
vary widely in their characteristics, both within and across boroughs. For example, across
boroughs, while the average proportion of Hispanic students is 65% in the Bronx schools, it
is only 28% in Staten Island. There is also wide within-borough variability. For instance,
the standard deviation of the proportion of Hispanic students is as large as 22 percentage
points within Brooklyn.

Within a school, multiple programs may be present, each featuring its own admission
policy and interest area. How the programs rank their applicants may be based on admis-
sions priority groups, screening policies, and lotteries. Priorities groups are lexicographically
more important than the rankings based on screening or lotteries.17 37.2% of the programs

16We use race and ethnicity interchangeably in this paper.
17The high school directory writes that “All students in the first priority group will be considered first.

If seats are available, students in the second priority group will be considered next, and so on.” We observe
that 4.34% of students experience deviations from this stated lexicographic rule.
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exclusively use screening to break ties within a priority group. Screening can be based on
various criteria, including grades, test scores, attendance, punctuality, and interviews. Other
programs use lotteries to break ties, sometimes jointly with screening.18

2.2 Deferred Acceptance Algorithm: Theory and Practice

The DA algorithm has been gaining popularity, based partly on theoretical results that
promise certain desirable properties. One such property is that the mechanism is strategy-
proof for the applicants: truthfully reporting their preference rankings weakly dominates
any other strategy. Another such property is matching stability. An important feature of
matching stability is that the matching does not have any unmatched student-program pair
such that each side prefers the other to (one of) the current assignment(s), i.e., the matching
does not have any case of justified envy.19 However, these properties do not directly address
distributional outcomes such as racial integration or the equity of assignments.

Even the two desirable outcomes promised by the theoretical results, namely, truthful
reporting and stability, may fail. Survey- and experiment-based evidence shows that a frac-
tion of applicants do not truthfully report even in DA mechanisms (Chen and Sönmez, 2006;
Calsamiglia, Haeringer, and Klijn, 2010; Hassidim, Marciano, Romm, and Shorrer, 2017;
Rees-Jones, 2018; Hassidim, Romm, and Shorrer, 2021). Complementing these results, Ash-
lagi and Gonczarowski (2018) theoretically show that DA is generally not obviously strategy-
proof in the sense of Li (2017); applicants with limited rationality may not understand its
strategy-proofness. Stability may also fail; nontruthful reporting (Gale and Shapley, 1962;
Artemov, Che, and He, 2017; Fack, Grenet, and He, 2019) or limited information about
schools may undermine stability.

Furthermore, theoretically ideal versions of DA that promise strategy-proofness and sta-
bility are only occasionally implemented in practice (Abdulkadiroğlu, Pathak, and Roth,
2009; Haeringer and Klijn, 2009). In particular, the matching procedure in NYC creates in-
centives for the applicants to deviate from truthfully reporting their preferences, because its
implementation deviates from the canonical DA in two respects. First, while the canonical
implementation allows applicants to list arbitrarily many school programs, in NYC, appli-
cants can list only up to 12 school programs. Students for whom such length constraint
binds must then consider their admission chances to the schools.20 Second, in NYC, there is

18Educational Option programs use both screening priorities and lotteries.
19Following the standard definition (e.g., Roth and Sotomayor (1992)), a matching is stable if there does

not exist: (1) any case of a blocking pair, i.e., an unmatched student-school pair where each side prefers the
other to [one of] the current assignment[s] (which might be an empty seat or no school assignment), and (2)
any case of individual irrationality, where a student [school] would prefer to remain unmatched [have one
additional empty seat] than to be matched to [one of] the current assignment[s]. It follows that a student
has justified envy if he is part of some blocking pair (Abdulkadiroğlu and Sönmez, 2003).

20Reflecting this, the 2017 NYC High School Directory states that “[i]f you are applying to ‘reach’ pro-
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an aftermarket that follows the main round.21 If a student believes that she can be matched
to a school in this aftermarket, she may choose not to list this school in the main round.

In addition, it is plausible that students have limited information about NYC’s 763
school programs. Corcoran, Jennings, Cohodes, and Sattin-Bajaj (2018) find that providing
information about schools altered the students’ choices in NYC. Moreover, lower-income
families may have differentially less information about high-performing schools (Sattin-Bajaj,
2016).

3 Evidence of Frictions and Disparities
Motivated by the aforementioned discussions, we explore empirical evidence of deviations
from the theoretical aspects of the DA algorithm. We also investigate racial disparities
within the context of the school choice program.

3.1 Data

Our main dataset is the administrative records provided by the NYC Department of Edu-
cation (DOE) for the 2016–2017 academic year. The data include students’ rank-ordered
choices—we refer to a student’s rank-ordered list of choices as the student’s report—as well
as school assignments, admissions priority groups, schools’ screening rankings over students,
and demographic information. The demographic information includes students’ race, home
address, subsidized lunch status, and performance on statewide seventh-grade English and
math tests. We restrict our sample to eighth graders attending an NYC DOE public school
at the time of application, mainly due to missing characteristics for other students.22 We
also use some public school-level data, including those from NYC’s High School Directory
and School Quality Reports.

3.2 Evidence of Frictions

Our descriptive analysis here focuses on two types of deviations from the theory in school
program application—that students are not fully aware of all the options available to them,
and that students are less likely to apply to schools with lower admission chances. These
are at odds with aspects of the canonical DA algorithm, namely full awareness and truthful
reporting. The empirical findings will guide us in the next section when we model the choice
behavior of students.

grams, be sure to include ‘target’ or ‘likely-match’ programs on your application.”
21Until 2019, there was a second round of DA for the schools with remaining seats (see, e.g., Narita,

2016). In 2020, a waitlist system replaced the second-round DA.
22The sample includes the students who opted out of the school choice process, who constitute 8.06% of

the sample. There are some ninth graders who participate in the process, but they constitute 0.01% of the
total applicants, and they can apply to only a subset of the schools.
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We first examine the students’ awareness of schools by inspecting whether the page
at which a school appears in the NYC High School Directory, which is about 600 pages
long, affects the application rates to the school’s programs.23 In the directory, schools are
first grouped into the five boroughs of NYC, and within each borough, they are ordered
alphabetically by their names. Provided that the alphabetical ordering is independent of
unobserved tastes, lower application rates for the schools appearing on later pages would
suggest that the students are not aware of all the schools.

Table 3 reports estimates from a probit model predicting whether a student applies to
a program (i.e., lists it anywhere in her report), focusing on the effect of Page Rank, which
denotes the within-borough rank of a program in terms of the order in which it is listed
in the NYC’s High School Directory. The top panel is based on the All eligible sample,
which includes all programs each student is eligible for. Columns (1) and (2) show that the
ordering significantly impacts the application rates. Moving a school’s position backward
by 100 page ranks (equating to 125 pages on average) is associated with a 24.16% decrease
in application rates, even after controlling for a rich set of observables, as suggested by the
average difference effect (ADE) relative to the mean application rate; we define the ADE as
the average increment in the (predicted) application probability when each school’s position
is first set at the frontmost position and then moved to the 100th position, while holding
other covariates fixed.

The results also hint at disparities in information. Separate estimates by ethnicity using
the All eligible samples suggest stronger negative associations for Black and Hispanic stu-
dents. This could be due to Asian and White students having access to better information
sources or preferable schools nearby, leading to less reliance on the directory. Our main
analysis suggests that Asian and White students’ consideration sets are more aligned with
their preferences (Table 6). Their neighborhood schools also tend to be more selective and
higher-performing (Figures 1 and A.1).

We now assess the assumption that page rank is uncorrelated with unobserved prefer-
ences. Table A.1 regresses the page rank on observable school characteristics. The F -statistic
has a p-value of 0.163, indicating that page rank is largely uncorrelated with preferences as
captured by observable school characteristics. Table 3 also supports the assumption. The
Near samples consist only of the student-program pairs for which the high school program is
within a half mile from the student’s home or within a quarter mile from the student’s middle
school. If students were applying less to later-page schools in the columns for the All eligible
samples due to unobserved preferences, such negative associations should continue to appear

23According to Sattin-Bajaj, Jennings, Corcoran, Baker-Smith, and Hailey (2018), guidance counselors
reported that the printed directory is the main source of information for the applicants.
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Table 4: Regressions of Application on Priority Group

Dependent variable: student applies to the program

Sample All All Near and likely Near and likely

Priority group −0.002*** −0.026*** −0.055*** −0.091***
(0.0001) (0.005) (0.005) (0.025)

Mean application rate 0.88% 0.88% 15.07% 15.07%
Controls Yes Yes Yes Yes
Program fixed effects No Yes No Yes

Observations 8,669,191 8,669,191 31,623 31,623
R2 0.0567 0.0494 0.32 0.164
Adjusted R2 0.0567 0.0494 0.319 0.158

Notes: *p<0.1; **p<0.05; ***p<0.01. An observation is a student-program pair. Students who listed 12 pro-
grams, ineligible student-program pairs, and programs with information sessions are dropped. Standard errors
are clustered at the program level. Near and likely sample are the student-program pairs such that the program
is within a half mile from the student’s home or a quarter mile from their middle school and satisfies one of the
following criteria: (1) the program did not fill its seats in the prior year, (2) the student belongs to the program’s
first priority group and the percent of offers that went to this group in the prior year is less than 90% (as stated in
the high school directory), or (3) the student scored higher than 350 in both the NY State Math and ELA tests;
4.18% of students satisfy the last criterion. Priority group refers to the predicted admissions priority group; see
Supplemental Material A.1. See Appendix D for the controls used and other details.

in the Near samples. On the other hand, if students are not applying to these schools due
to a lack of awareness, the association should tend to disappear in the Near samples, given
that students are likely aware of these nearby schools. Our findings align closely with the
latter scenario: the ADE divided by the mean application rates is either smaller or reverses
sign, though not statistically significant, in the Near samples (Columns 7–12). Conversely, if
we take as given that alphabetical ordering is independent of preferences, the results for the
Near samples support the assumption that the students are indeed aware of these nearby
schools. We utilize this assumption to estimate the model of application behavior in Section
6.

Next, we turn to another phenomenon: students base their reports on admission chances.
Table 4 summarizes OLS regressions of applications on admissions priority groups. We re-
strict these regressions to students who did not exhaust their lists, implying that the list
length constraint is not binding for them. In such cases, a weakly dominant strategy is truth-
ful reporting in the order of preferences independent of beliefs about admission probabilities,
rendering priorities inconsequential apart from potential correlation with preference.

Yet the results demonstrate a substantial influence of priority groups on whether the stu-
dent lists a program; lower-priority students (i.e., those with higher numerical values of the
variable priority group) tend not to list the program. This effect holds true irrespective of
whether we account for the potential correlation of priorities with unobserved program qual-
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Table 5: Regressions of Submitted Rank on Priority Group

Dependent variable: rank in submitted report

No. of listed programs 2 4 6 8 10 12

Priority group −0.138 −0.048 0.124 0.371*** 0.443*** 0.477***
(0.091) (0.083) (0.086) (0.118) (0.137) (0.104)

Controls Yes Yes Yes Yes Yes Yes
Program fixed effects Yes Yes Yes Yes Yes Yes

Observations 3,750 14,858 29,666 36,794 33,316 130,460
R2 0.0246 0.0152 0.0122 0.0157 0.0172 0.0154
Adjusted R2 −0.122 −0.031 −0.0113 −0.00316 −0.00361 0.0101

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. An observation refers is a student-program pair
such that the student has included the program in their list, with the list’s length
corresponding to the number indicated in the column heading. Priority group refers
to the predicted admissions priority group; see Supplemental Material A.1 for details.
Refer to Appendix D for the controls used. Standard errors are clustered at the
program level.

ity via program dummies.24 The inclusion of fixed effects intensifies the effect of priorities,
suggesting that programs that attract students for reasons unexplained by observables often
accommodate more priority groups. Even when we narrow down the analysis to the Near
and likely sample, consisting of student-program pairs where students presumably perceive
high admission chances and the students are likely to know that because the programs are
near their home or middle school, the effect persists albeit at a weaker strength relative to
the mean application rates, using our preferred estimates with program dummies.

Given the indications that students consider admission chances when deciding whether to
list a program, it is also of interest to explore whether these chances also affect the rankings in
the report. Having fixed which programs to list, factoring in admission chances when ranking
the programs cannot benefit the students, regardless of whether the list length constraint
binds (Haeringer and Klijn, 2009). Table 5 presents OLS regressions of the submitted rank
of a program on the student’s priority group, using a sample of applicants who listed a
given number of programs. The effects of priorities on rankings are somewhat mixed and
are milder than their effects on the decision to list a program. For instance, among students
listing twelve programs, moving to the next less-preferred priority group (a unit increase in
the variable priority) results in a drop of 0.477 in rank (0.477/11 = 4.3% of the available
variation in rank). However, for those listing only two programs, the same shift in priority

24We believe that the correlation between predicted priority groups and unobserved preferences of students
are likely minimal even within schools. The predicted priority groups can only be based on geographic
boundaries and whether the student attends the same middle school as the high school in question, and
our controls include rich controls for distance to schools in addition to the indicator for whether the middle
school is the same as the high school.
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Figure 1: Nearby and Applied Schools, by Ethnicity

Notes: College/career rate denotes the school’s proportion of students who enrolled in college, a voca-
tional program, or a public service program within six months of graduation. Student’s middle school
math score is the applicant’s performance in the New York State Math test during seventh grade. The
lines represent smoothed conditional means, using cubic regression spline with shrinkage. The shaded
regions represent 95% confidence intervals. The dashed lines are drawn using the schools within one mile
from the applicant’s home address. The solid lines are drawn using the schools that the applicant has
listed on the submitted rank-order report. A sample of 20,000 students is used.

has the opposite (and insignificant) sign. This result may be influenced in part by selection
issues; the sample only includes listed programs. If a student lists a lower-priority program,
which Table 4 shows is uncommon, it likely indicates a strong preference, leading her to rank
it higher on her list.

Overall, the analyses suggest that students may not be aware of all the programs and
admission chances may influence their application behavior. As for the latter, the students
seem to factor in the chances of admission when choosing which schools to list, although the
influences of the chances on their ranking behavior remains inconclusive. The main model,
as we develop in Section 4, takes these descriptive findings into account, by allowing for
limited consideration and incorrect beliefs.

3.3 Disparities in Residential Location and Choice Behavior

Now we document empirical findings regarding racial disparities both in terms of the stu-
dents’ proximity to and their application to better-performing schools, as illustrated in Figure
1. First, focusing on the dashed curves, we observe substantial racial disparities in the appli-
cants’ neighborhood schools (within a mile from home). These disparities do not disappear
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even after controlling for applicants’ performance in the middle school mathematics tests; the
neighborhood schools of even the best-performing Black and Hispanic students have lower
college/career rates than those of the lowest-performing Asian and White students.

With the solid curves, we gather several patterns regarding how students utilize school
choice. Applicants do take advantage of school choice and apply to higher-performing
schools.25 In terms of the schools that applicants apply to, the racial disparities appear
reduced. High-performing applicants are more likely to apply to high-performing schools.
These patterns could be explained by differences in preferences, in awareness, or in assess-
ments about admission chances.

4 Model of Students’ Application Behavior
This section lays out our main model: how students apply to schools. In our model, students
maximize expected utility subject to two types of optimization frictions, as suggested by
our empirical evidence. First, they may consider only a limited set of school programs
due to a lack of awareness or the perception that they have no chance of being admitted.
Second, even when they consider the programs, they may still have incorrect beliefs about
the equilibrium assignment probabilities. In particular, these incorrect beliefs may reflect
students’ misunderstandings of the properties of DA.

A school program is considered by an applicant if (1) he is aware of that school program,
and (2) he feels the school is reachable, i.e., that he has a positive chance of assignment to
that school program upon listing it.26 The consideration set of applicant i, denoted by Ci,
is the set of school programs considered by applicant i. Consideration of school program
j by applicant i is determined by a latent variable cij ∈ (−∞,∞].27 A school program is
considered if and only if cij > 0. We assume that students do not consider ineligible schools.

Each applicant i solves

max
r∈R(Ci)

J∑
j=0

prijvij (4.1)

25Figure A.1 shows that students are typically matched to schools whose characteristics fall between those
of the neighborhood schools and those of the schools they apply to.

26This definition differs from the typical definition of consideration in the discrete choice literature in that
we impose (2) in addition to (1). However, the imposition of (2) is natural in two-sided matching settings,
where assignments are stochastic at the time of reporting. Furthermore, (the lack of) consideration may be
interpreted to additionally capture some factors other than awareness and zero admission chances: fear of
rejection, risk aversion, or (psychological) cost of application. In other words, the model of consideration
intends to capture any reason other than preferences that might prevent a student from listing a school
program. We focus on awareness and degenerate assignment probabilities as the main reasons why students
may drop the school program from the list, as evidence suggests these channels are significant.

27In Sections 5 and 7, we will assume that there are certain school programs that are surely considered
by an applicant; such a school program is denoted by cij =∞ for notational convenience.
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where j ∈ {1, . . . , J} ≡ J denotes a school program available through the application
procedure, and j = 0 is the outside option.28 Given the consideration set Ci ⊆ J , a report
r ∈ R(Ci) is either an empty list ∅ or an ordered list of school programs in Ci with length at
most 12.29 Formally, R(Ci) ≡ {∅} ∪

⋃12
k=1

{
(j1, . . . , jk) ∈ Cki |jm 6= jn for m 6= n

}
. Although

r is an ordered list, we occasionally abuse notation to treat r as if it were an (unordered)
set; for instance, we write j ∈ r to denote that j is written somewhere in r, regardless of its
position in r. prij ∈ [0, 1] denotes i’s subjective assessment of the probability of being assigned
to j upon submitting report r, and vij is the utility that i derives from being assigned to
j, with normalization vi0 = 0. The solution to the maximization problem in Equation 4.1
is denoted by ri. Multiple solutions can occur with probability zero under our assumptions
and are ignored.

We model nondegenerate30 beliefs about assignment probabilities similarly to Kapor,
Neilson, and Zimmerman (2020), which is motivated by the cutoff and score representation
of the matching algorithms (Agarwal and Somaini, 2018; Azevedo and Leshno, 2016). The
representation uses two quantities: scoreij and cutoffij. Being a function of admissions
priority groups, screening rankings, and lotteries, scoreij represents program j’s evaluation
of applicant i, with a lower score denoting higher preference. One important aspect of DA
is that scoreij is not a function of the student’s submitted ranking of the school program.

On the other hand, the student-type-specific cutoffij ≡ cutoffj(typei) determines how
many students of typei are admitted by program j. In NYC, typei indicates whether the
student has disabilities. Separate capacities are set for each type.31

Under the cutoff-score representation, each student is matched to his first school program
in the list for which scoreij is below cutoffij. We model beliefs about the assignment probabil-
ities based on this process. Each student forms subjective assessments of his cutoffij− scoreij
for each school program j. For student i, his assessment of diffij := cutoffij − scoreij is
represented by the student-specific random variable d̃iffij(k) := c̃utoffij − s̃coreij(k), where k
denotes the rank of j in i’s report. The randomness in d̃iffij(k) represents the student’s per-
ceived uncertainty about the scores and the cutoffs. Note that the distribution of s̃coreij(k)

can depend on the rank k; although rankings of programs in students’ reports cannot af-
fect the scores in DA, students may not recognize this property of DA. On the other hand,

28The outside option is interpreted as the inclusive value of remaining unassigned in the main round of
the application process.

29The empty list represents non-participation in the main (first) round of the application process.
30Zero admission chances are modeled through consideration. Upon consideration, the students have

nonzero admission chances. In the paper, beliefs refer to the beliefs about admission chances upon consid-
eration, implying positive subjective admission chances.

31For programs using the Educational Option admission method, the type also depends on the applicant’s
reading category, determined by the middle school English Language Arts (ELA) score.
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we do assume that applicants are monotone in their misunderstanding; while they might
mistakenly believe that ranking a school higher can improve their scores, they correctly un-
derstand that ranking a school program lower cannot. Formally, we assume k < k′ implies
s̃coreij(k) ≤ s̃coreij(k′) for all (i, j) in any realization.

Using the scores-and-cutoffs representation, we write the nondegenerate subjective belief,
for program j listed in report r, as

prij = Pi
(
d̃iffij′(krj′) < 0 ∀j′ s.t. krj′ < krj , d̃iffij(krj ) > 0

)
(4.2)

where krj denotes the rank of j in report r. As mentioned above, report r consists only
of considered school programs, and a program is considered only if the student feels the
program is reachable. Therefore, in effect, we assume prij > 0 for all i, r ∈ R(Ci), and j ∈ r.

Finally, for j not listed in the report r, prij = 0; that is, the student correctly believes
that he cannot be matched to j in the main round unless he lists it in the report.

5 Identifying Preferences, Consideration, and Beliefs
Before presenting our empirical specification of the model, we outline an intuitive overview of
the identification strategy, demonstrating how the three channels in our model—preferences,
consideration, and nondegenerate beliefs—can be separated out. Appendix C develops suf-
ficient conditions for nonparametric identification, formalizing and extending the ideas pre-
sented here.

First, there is variation in the data that is affected only by preferences and consideration,
and not by nondegenerate beliefs: (1) the number of programs in an applicant’s list and (2)
whether a program is listed in an applicant’s list, provided that the applicant’s list contains
strictly fewer than 12 programs.

Observation 1 (Variation reflecting only preferences and consideration). Suppose applicant
i’s list ri has strictly fewer than 12 school programs. Then, j ∈ ri if and only if both
cij > 0 and vij > 0. Furthermore, ri has strictly fewer than 12 programs if and only if
{j ∈ J |vij > 0, cij > 0} has strictly fewer than 12 programs.

The proof is given in Appendix C.4. Intuitively, if a student is not constrained by the
length constraint and he considers a program (thus aware of the program and perceive it as
reachable), he has no reason to drop it from his report, as long as he prefers it to the outside
option. Conversely, if he does not prefer it to the outside option or does not consider it, he
will not list it.

Given that Observation 1 shows that there is data variation that is strictly affected by
preferences and consideration, a natural question is whether there is also variation that can
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be used to disentangle preferences from consideration. Intuitively, such separation may be
possible if (1) there are some school programs that are “surely” considered by an applicant
or if (2) there are shifters of consideration that are excluded from utilities (Goeree, 2008).
We define the surely considered set of applicant i, denoted by Si, as the set of programs
(assumed to be) surely considered by applicant i. Formally, Si ⊆ Ci with probability 1.
The following observation, a corollary of Observation 1, aids in separating preferences and
consideration using surely considered sets.

Observation 2 (Variation only reflecting preferences). Suppose applicant i’s list ri has
strictly fewer than 12 school programs and that j ∈ Si. Then, j ∈ ri if and only if vij > 0.

Combined, Observations 1 and 2 provide the basis for separately identifying preferences
and consideration. Intuitively, one may first identify preferences using Observation 2 and
then identify consideration using Observation 1. Propositions C.1 and C.2 in Appendix C
formalize the intuition by providing sufficient conditions for nonparametrically identifying
the distributions of preferences and consideration sets. These results also clarify how the
consideration instruments that are excluded from preferences, which we did not utilize in
Observations 1 and 2, aid in identification.

In Section 7.1, we discuss how the potential selection issues—Observations 1 and 2 only
utilize the students who do not exhaust all slots in the report—are resolved by an indepen-
dence assumption. Propositions C.1 and C.4 show the conditions under which the selection
issues regarding the exhaustion of the slots do not arise even without the independence
assumption.32

To identify nondegenerate beliefs, we may use two kinds of remaining variation in the
data. First, in Observations 1 and 2, we did not utilize the information in how the applicants
ordered the programs; we used only the information of whether programs were listed. Second,
we have not yet utilized the variation in the portfolio choices of the applicants for whom
the list length constraint binds. These aspects of data variation are affected by beliefs in
addition to preferences and consideration.

Observation 3 (Variations reflecting nondegenerate beliefs).

(i) Suppose that an applicant has more than 12 programs that are considered and preferred
to the outside option. Then, the identities of the programs in ri are determined as

32The key is that these results utilize the presence of a shifter of consideration (excluded from utilities) in
addition to the surely considered schools, unlike in the Observations. Proposition C.4 further assumes the
presence of a utility shifter that is excluded from consideration. On the other hand, case (ii) of Proposition
C.5, which does not utilize the excluded shifters (and rather only utilize surely considered sets), still allows
us to bound the joint cumulative distribution of the utilities among the surely considered programs within
an interval per each student. The average length of the intervals (across students) is approximately 0.16.
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a function of
(
vij, cij, (p

r
ij)r∈R(J )

)
j∈J . In particular, the function is not constant in

(prij)j∈J ,r∈R(J ).

(ii) Suppose that ri contains at least two programs. Then, ri is determined as a function of(
vij, cij, (p

r
ij)r∈R(J )

)
j∈J . In particular, the function is not constant in (prij)j∈J ,r∈R(J ).33

In a restricted setting, Proposition C.3 outlines the conditions for nonparametric iden-
tification of beliefs. As nonparametric identifiability in a general setting is ambiguous, our
parametric specification of beliefs only intends to gauge the degree of truthtelling, separately
for when the list length constraint binds and when it does not. Intuitively, the variation in
Observation 1 and 2 identifies the distribution of preferences and consideration conditional
on observables. These distributions then determine the distribution of the counterfactual
truthful reports constructed only using the considered programs. In particular, these re-
ports should exhibit a declining trend in predicted utilities (which can be constructed from
the identified preferences) as we descend the list. By contrasting this with the diminishing
rate of predicted utilities in actual reports, we can assess the degree of truthfulness in these
reports. Figure A.5 implements the comparison.

6 Empirical Specification
Student Preferences The utility vij in our empirical analysis is specified as

vij = xvjβ
v
ethi + zvijα

v
ethi + εvij,

where xvj denotes the vector of observed program characteristics and zvij denotes the vector of
observable variables that vary across i or (i, j). The idiosyncratic taste shock is represented
by εvij ∼i.i.d N(0, 1), and we assume that it is independent of (xvj , z

v
ij).34 The scale of vij is

normalized by setting the standard deviation of εvij equal to 1. The location is normalized
by vi0 = 0. Thus, vij is interpreted as the utility of j relative to the outside option 0. As we
allow i-specific terms in zij, the value of the outside option relative to all the inside options
can vary across these student-level observables. The parameters are specified separately
according to the four ethnicities.35 The vector xj includes, for example, college/career rate,
average middle school math achievement, ethnic composition, and program interest area

33From the construction of the maximization problem in Equation 4.1, report ri and the identities in the
report is a function of (prij)j∈J ,r∈R(J ). To see examples of nonconstancy of the functions with respect to
(prij)j∈J ,r∈R(J ), see the cases in Proposition C.3 and the corresponding proof.

34The assumption may be mild in the sense that we do not need to regard the coefficients on (xvj , z
v
ij) as

causal in the counterfactual analyses.
35Native American and Multi-racial students, who make up 1.6% of the sample, were grouped with

White students, comprising 15% of the sample. This decision was based on the similarity in observable
characteristics between these groups and the White student population.
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dummies. The vector zij includes subsidized lunch status, distance to school, and home
borough dummies.

Consideration We specify the latent variable cij as

cij =

xcjβcethi + zcijα
c
ethi + εcij if j /∈ Si

+∞ if j ∈ Si

where Si denotes the surely considered set for applicant i, which we specify below. The
vector xcj includes observed program characteristics, and zcij denotes the vector of observable
variables that vary across i or (i, j). The idiosyncratic shock is represented by εcij ∼i.i.d
N(0, 1), and we assume that (εcij)j is independent of (xcj, z

c
ij, ε

v
ij)j, implying that dependence of

vij and cij is modeled through observables.36 The scale is normalized by setting the variance
of εcij equal to 1. The parameters are specified separately according to each ethnicity. The
parameters encapsulate the association of each characteristic with the likelihood of a student
being aware of a program and perceiving it as reachable.

In our specification, the observables (xcj, z
c
ij) contain all the observables that enter utility,

i.e., (xvj , z
v
ij), with a trivial exception.37 On the other hand, there are variables that only

enter (xcj, z
c
ij) but not (xvj , z

v
ij). These variables reflect the order in which the school program

appears in the school directory within its borough, whether the program is located in the
borough where the student lives, an indicator for the program being close to the applicant’s
middle school, and a proxy for applicants’ admission probabilities at the program.

Specifically, the page rank variable records the order in which the program’s school ap-
pears in the 600-page long NYC school directory (ranked within its borough). Because
applicants may overlook the schools listed later, the page rank may shift consideration.
However, as the schools follow alphabetical ordering within their boroughs, we argue that
page rank is excluded from preferences.38 We also allow the indicator of whether a program
is within one mile from an applicant’s middle school to affect consideration. A student’s
(objective) admission probability to the program likely influences her assessment of having
a positive chance of admission, and therefore we include its proxy in the consideration equa-

36Proposition C.4 and Agarwal and Somaini (2022) suggest joint distribution of (εvij , ε
c
ij)j can be non-

parametrically identified if there is a special regressor that shifts utility but is excluded from consideration
(in addition to a shifter of consideration excluded from preferences). While we have a variable that enters
only utility and not consideration—an indicator for high school being the same as the applicant’s middle
school—it is far from being a special regressor.

37An indicator for the program being in the same school as the student’s middle school is in zvij but is
not in zcij . Such a school is assumed to be surely considered (as we explain below) and therefore excluded
from zcij , which only affects those not surely considered.

38We discussed how Tables 3 and A.1 are consistent with this assumption.
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tion. The proxy is calculated as the difference between her objective expected scores and
cutoffs; see Supplemental Material A.2 for details. Whether a student resides in the same
borough as a school program could influence the student’s awareness, partly because schools
are categorized by borough in the directory. It can also influence the student’s subjective
assessment of whether the program is reachable, as priority groups often depend on whether
the student’s home borough matches the program’s borough.

The surely considered set Si is the intersection of the two sets: (1) the programs that
are within a half mile from her home or a quarter mile from her middle school, and (2)
the eligible programs that are likely for the student and the student is in their first priority
group. Consistent with the usage of the term in Table 4, a program is likely for a student if
(a) the program did not fill its seats in the prior year, (b) the student is in the program’s first
priority group, and fewer than 90% of the students admitted in the prior year belong to this
group, or (c) the student scored higher than 350 in both the NY State Math and ELA tests;
4.18% of students satisfy the last criterion. Despite the strength of being a likely program
as a criterion for ensuring that a student feels the program is reachable, evidence in Table 4
indicates that priority groups still influence application rates. Thus, we require further that
the student be within the program’s first priority group. The requirement that the program
must be proximate to the student’s home or middle school serves to ensure the student’s
awareness of the program and of their high (and therefore nonzero) chances of admission.
This specification results in 2.16 surely considered programs per applicant on average. Note
that the surely considered sets are entirely determined by observables, while consideration
sets are jointly determined by observables and unobservables.

Beliefs Once a student considers a program, his subjective assessments of assignment prob-
abilities are derived from his beliefs about the actual cutoffs and scores. As explained in Sec-
tion 4, student’s anticipation regarding the actual diffij ≡ cutoffij − scoreij ≡ cutoffj(typei)−
scoreij is represented by the random variable d̃iffij(k), where k is the rank at which the
student places the program within his report (Kapor, Neilson, and Zimmerman, 2020).

Starting from Equation 4.2, we further assume

prij = Pi
(
d̃iffij′(krj′) < 0 ∀j′ : krj′ < krj

)
Pi
(
d̃iffij(krj ) > 0

)
=

k−1∏
l=1

(1− qijrl l)qijk

where qijk denotes Pi(d̃iffij(k) > 0), and jrl denotes the school program listed at the lth
spot in r. This simplifying assumption allows us to reduce dimensionality in representing
the optimal report choice problem in Equation 4.1 as a “dynamic” problem solvable through
backward induction as in Calsamiglia, Fu, and Güell (2020) (Appendix F). This makes the
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computation feasible even with a vast choice set of rank-ordered reports.
Now, to parametrize qijk, we model d̃iffij(k) as

d̃iffij(k) := c̃utoffij − s̃coreij(k) = cutoffij − Eobj[scoreij] + εbijk

≡ cutoffij − Eobj[scoreij] + βethi
rank log(k)︸ ︷︷ ︸

:=δdiffijk

+νij

where δdiffijk represents the student’s subjective (mean) prediction of cutoffj(typei) − scoreij.
The objective part, cutoffij − Eobj[scoreij], is calculated based on the data of the admission
decisions by the programs as outlined in Supplemental Material A.2. Roughly, we construct
the expected scores based on the written rules about admissions priority groups and on the
data about how the students were ranked by the programs that use screening policies. The
cutoff is determined by the score of the least preferred applicant among those accepted. The
subjective part—prediction bias—arises when βethi

rank 6= 0, which implies that the students
mistakenly believe that how they rank the program influences their scores in DA.

The last term νij ∼iid Logistic(0, σethiν ) encapsulates the student’s assessment of his own
prediction error; larger σethiν implies more doubt about his own assessment. Students un-
derstand that prediction errors can arise for two reasons: their predictions may be biased,
and there are uncertainties, such as admission lotteries, that are inherently impossible to
resolve. From the perspective of the student, his subjective assessment d̃iffij(k) follows
Logistic(δdiffijk , σethiν ), implying qijk ≡ Pi(d̃iffij(k) > 0) =

(
1 + exp(−δdiffijk/σethiν )

)−1
.

For each ethnicity, the two parameters that govern belief are (βethi
rank, σ

ethi
ν ). Together, they

determine the degree of truthful ranking behavior and to which such behavior is affected by
the list length constraint. When βethi

rank = 0, subjectively optimal lists are truthfully ordered
in terms of utilities among the listed programs (Haeringer and Klijn, 2009). A student may
still prefer some unranked program over certain ranked programs for two reasons: (1) the
student did not consider the program because he believed he had de-facto zero admission
chance or was unaware, or (2) the student did consider the program, but his chances or
utilities were too low that he decided to exclude it from his twelve slots to list another
program; the latter case only arises when the length constraint binds. If βethi

rank < 0, on the
other hand, the submitted rankings may not be truthfully ordered in terms of utilities even
among the listed programs.39 The level of σethiν , which governs the level of doubt the student
has about his prediction, can also affect the degree of truthtelling. If σethiν =∞, which may
be understood as “giving up” on trying to predict the admission chances, then students rank
the programs truthfully among the considered programs that are preferred to the outside

39We assume students know that lower rankings cannot improve scores, ruling out βethi

rank > 0.
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option, until they run out of such programs or exhaust all the 12 slots. In this case, the
ranked programs are always preferred to any considered but unranked program.

7 Estimated Preferences, Consideration, and Beliefs

7.1 Estimation

Estimation proceeds in two stages. We first estimate preference and consideration parameters
using the partial likelihood of inclusion of programs in submitted reports. The second stage
estimates the belief parameters using moment conditions comparing the actual and the
simulated reports, taking as given the estimates from the first stage.

The first-stage partial likelihood, guided by Observations 1 and 2 (or more formally,
Propositions C.1 and C.2), depends only on preference and consideration parameters, ex-
cluding belief parameters.40 This likelihood uses a sample of student-program pairs that
meet a specific criterion (|ri\{j}| < 11), which implies the criterion in Observations 1 and 2
(|ri| < 12), to address selection issues. Assuming (εvij, ε

c
ij) is i.i.d across j,41 we establish the

distribution of the unobservables (εvij, ε
c
ij)j∈J is independent of our selection criterion (Lemma

E.1). Appendix E.1 delineates the partial likelihood and shows that the true parameters
maximize it. We randomly sample 4,000 students per ethnicity to facilitate estimation.42

In the second stage, belief parameters (βeth
rank, σ

eth
ν )eth are estimated using the Generalized

Method of Moments, taking as given the first-stage estimates for preference and consid-
eration.43 Contrary to the first-stage likelihood, the moment conditions incorporate the
students who exhausted all the twelve slots and (not only the inclusion but also) the order-
ing of programs in reports. The moments compare simulated and actual reports in terms
of the characteristics of the programs being listed in the first top k ∈ {1, · · · , 12} slots,
separately depending on whether the applicant exhausts the twelve slots. They also capture
the within-list variation in the characteristics, intending to capture the degree to which ap-
plicants diversify their portfolios. These moment conditions use the identifying information
in Observation 3 or that in Proposition C.3. The exact moment conditions are provided in

40A part of this partial likelihood depends solely on preference parameters, following Observation 2. See
Appendix E for details.

41This assumption excludes a random coefficient model, but this may not be overly restrictive (Pathak
and Shi, 2020).

42We also weight (i, j) pairs for which i surely considers j, so that such pairs have a combined weight
of 5% in the sample. Such (i, j) pairs constitute only approximately 0.24% of the sample; we amplify their
importance by weighting. Without the weighting, the level of consideration probabilities for the Asian and
White students were not robust to different specifications. We hypothesize that this might be due to page
rank instrument being weaker for the Asian and White students, and therefore having to rely more on other
instruments or surely considered programs.

43The moment conditions also contain information about preference and consideration parameters. Hence,
joint estimation of all the parameters using the scores of the first-stage likelihood stacked with the moments
here would be more efficient. For computational tractability, we proceed in two stages.
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Table 6: Summary of Preference and Consideration

Asian Black Hispanic White

% Programs considered 8.97% 13.83% 10.48% 6.24%

% Programs surely considered 0.22% 0.29% 0.29% 0.19%

% Programs considered among those preferred to outside option 16.84% 11.66% 13.84% 11.53%

% Programs preferred to outside option 5.56% 6.12% 6.19% 6.43%

% Programs preferred to outside option among surely considered 12.93% 10.98% 12.25% 15.86%

% Programs preferred to outside option among considered 13.23% 6.62% 9.27% 13.26%

% Programs both considered and preferred to outside option 0.96% 0.99% 0.97% 0.73%

Appendix E.2.

7.2 Estimates

Preference and Consideration In Table 6, we provide a summary of the key features
of the estimated parameters (raw parameter estimates are shown in Table A.2). Students
across all ethnicities are estimated to consider approximately 10.6% of programs on average.
White students consider the smallest proportion of schools, potentially because their average
distance to schools is the farthest (Table 1). The correlations between preference and con-
sideration appear stronger for Asian and White students. For Black and Hispanic students,
the proportions of considered programs Pr(cij > 0) are roughly equal to the proportions of
considered programs among those preferred to outside option Pr(cij > 0|vij > 0), suggesting
near independence of the two events cij > 0 and vij > 0. On the other hand, for Asian
and White students, the latter is roughly twice the former, indicating a positive alignment
between preference and consideration. The results also show that White students are the
most likely to prefer their surely considered programs.

Figure 2 summarizes preference and consideration estimates by race, illustrating sig-
nificant racial differences in both channels. A point in the scatter plots corresponds to a
program-race pair. Figures 2a and 2b depict the within-race average probability of a school
being preferred to the outside option or being considered. Figures 2c and 2d present the
within-race average predicted latent values of vij and c̃ij, where c̃ij adjusts cij for the fact
that sure consideration implies cij =∞ by construction.44

Our findings reveal that Asian and White students have stronger preferences for more
selective programs, represented by the average middle school math proficiency of incoming
students, compared to Black and Hispanic students. Although this trend might simply be

44 Specifically, we use extrapolated values of xcjβc
ethi

+ zcijα
c
ethi

+ εcij (which equals cij for the not surely
considered programs) even for the surely considered programs. The predicted latent variables are comparable
across students and ethnicity, in the sense that they are one-to-one with probability of consideration Φ(ˆ̃cij)

and of being preferred to the outside option Φ(v̂ij), where ˆ̃cij = c̃ij − εcij and v̂ij = ṽij − εvij .
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Figure 2: Probability and Latent Values for Preference and Consideration
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Notes: For each ethnicity, each point in the scatter plot denotes a program. Figures 2a
and 2b depict the within-race average probability of a school being preferred to the outside
option or being considered. Figures 2c and 2d present the within-race average predicted
latent values of vij and c̃ij , where c̃ij adjusts cij for the fact that sure consideration implies
cij = ∞ by construction (see footnote 44 for details). Figures 2e and 2f show the latent
values when the distance to school is set to zero.
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mirroring the geographical distribution of less selective schools, which tend to be located
further from Asian and White students’ homes (Figure A.1), results are similar even after
nullifying the effect of distance by re-calculating the latent values after setting the distance-
to-school variable to 0, as we do in Figure 2e. The patterns remain substantially consistent
when school selectivity is replaced with school performance gauged through college/career
rates (Figure A.2) or when we estimate preferences using only the surely considered programs
(Figure A.3).

We also note racial disparities in consideration. Black and Hispanic students are more
likely to consider less selective programs than Asian and White students. This pattern
emerges partly because Asian and White students typically live farther from less selective
programs and because the distance to schools is an important determinant of consideration,
especially for these groups (Table A.2). The larger impact of distance on consideration
for Asian and White students may also be influenced by the quality of schools in their
neighborhoods. They tend to have better local schools (Figure A.1 and Figure 1), potentially
reducing incentives to explore distant schools, for instance, through the school directory.
Consistent with this hypothesis and mirroring the descriptive evidence in Table 3, we find
that page rank affects consideration more for Black and Hispanic applicants (Table A.2).
White students live farther from schools in general (Table 1); after removing the effect of
distance, they are the second most likely group to consider highly selective programs after
Asian students (Figure 2f). If we assumed that students would be aware of highly selective
programs if the distance were negligible, the racial disparities in consideration probabilities
for these programs in Figure 2f would only reflect the varying perceptions among races
about the reachability of these programs, and not awareness. Under the assumption, the
figure suggests that Black and Hispanic students feel the highly selective programs are less
reachable compared to Asian and White students.

Beliefs Our two belief parameters (per ethnicity) determine the extent of truthtelling be-
havior when the list length constraint binds and when it does not. Table 7 indicates that
students tend to truthtell in both scenarios. The fractions represent how many of the sim-
ulated subjectively optimal reports from our estimated model exactly match the simulated
truthful-among-considered reports, where a report is said to be truthful among considered if
the considered programs are ranked truthfully according to the utilities until no more pro-
gram is preferred to the outside option or all 12 slots are filled.45 Notably, even when the
length constraint binds, the subjectively optimal reports approximate the truthful-among-
considered reports. Section 8.3 further explores the implication for the truthfulness of reports
among all eligible (not just considered) programs. Figure A.5 performs a diagnostic com-

45Such a report may still skip some programs deemed unreachable or unknown to the student.
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Table 7: Fraction Truthful

List length Asian Black Hispanic White All

Truthful among considered

All reports 99.7% 98.2% 99.8% 100.0% 99.4%
Full (12 programs) 97.5% 93.4% 96.8% 98.8% 95.8%
Not full 99.8% 98.5% 100% 100% 99.6%

Truthful ordering among listed

All reports 99.8% 98.4% 100% 100% 99.5%
Full (12 programs) 99.6% 96.8% 100% 100% 98.8%
Not full 99.8% 98.5% 100% 100% 99.6%

Truthful inclusion among considered

All reports 99.9% 99.8% 99.8% 100.0% 99.8%
Full (12 programs) 97.7% 96.5% 96.8% 98.8% 96.9%
Not full 100% 100% 100% 100% 100%

Notes: The bottom panel tabulates subjectively optimal reports that
list the same set of programs as truthful-among-considered reports,
ignoring the ordering.

parison of the slopes of mean utilities against rank across different reports as discussed in
Section 5.46

Since we do not accommodate individual heterogeneity in truthtelling attitude within
race,47 the findings here should not be literally interpreted to imply that almost no student
deviates from truthtelling. Instead, the results suggest that a representative student for each
race may be viewed as essentially truthtelling.

8 Impacts of School Choice and Counterfactual Policy

8.1 Impacts of School Choice: A Decomposition Analysis

Effects on Racial Integration We find that NYC’s school choice slightly promotes racial
integration relative to neighborhood matching. Our analyses also reveal that student pref-
erences, net of the confounding effects from limited information and potential nontruthful
behavior, contribute to integration. Schools’ admission priorities and screening policies tend
to exacerbate segregation.

In Figure 3, we measure racial segregation by the isolation index, which is the average
proportion of students of the same ethnicity within each student’s matched program. The
indices under school choice matchings—Actual and Estimated—are similar to or lower than
those under Neighborhood matching. We then sequentially shut off each channel as described

46The downward trend in mean utility along the subjectively optimal reports well approximates that of
the observed reports from the data. The subjectively optimal reports, in turn, are almost indistinguishable
from the truthful-among-considered reports, reflecting that the belief parameters are in line with truthtelling
among considered programs.

47The error term νij in the belief model is integrated out in the calculation of qijk and therefore individuals
with the same observables from each race have the same qijk.
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Table 8: Matching Definitions

A. Matchings without school choice

Matching Matching method

Random Random allocation of students to the programs with capacity constraints

Neighborhood Minimize total distance traveled by the students to the programs with capacity constraints

B. Matchings with school choice

Matching Simulated? Preferences Beliefs Consideration Sets Screening Priority Groups

a. Baseline matchings

Actual No – – – – –

Estimated Yes Estimated Estimated Estimated Estimated Approximated

b. Decomposition matchings

Change to Truthful among Considered Yes Estimated Truthful among Considered Estimated Estimated Approximated

Change to Full Consideration Yes Estimated Truthful among Considered All eligible Estimated Approximated

Change to Random Screening Yes Estimated Truthful among Considered All eligible Random Approximated

Change to No Admissions Priorities
(Student-Preferences-Only Choice)

Yes Estimated Truthful among Considered All eligible Random None

Notes : Approximation solution was used in the minimization for Neighborhood matching (Supplemental Material B.1). Actual matching refers to the actual
school choice matching in 2017 from the main round of DA. See Appendix D for other details about the implementation of the matchings in the table.

in Table 8. Changing the estimated beliefs to Truthful among Considered does not lead to
significant changes, which is natural given our belief estimates are close to truthful among
considered. Limited consideration is estimated to have mixed impacts across races. Schools’
preferences—reflecting its screening policies and admissions priority groups—act together to
segregate races.

For the decomposition exercises, note that we first deactivated the two student channels
(regarding beliefs and consideration) before turning off the school channels. We chose this
approach to avoid making assertions about how changes in admission policies will alter
consideration sets and subjective beliefs.

While we observed both similarities and differences in preferences across races (e.g.,
in Figure 2), overall, student preferences work to integrate races. This is evident when
we compare Student-Preference-Only School Choice allocation—the DA with fully-informed
students making truthful reports and programs randomly ranking the students—with Neigh-
borhood allocation. Figure A.6 compares the density of the proportions of same-ethnicity
students under Random, Neighborhood, and Actual allocation.

Effects on Assignment to Preferred Programs by Race We find that school choice
increases the likelihood of assignments to one of the students’ top preferred programs, re-
gardless of ethnicity. However, the gains are mitigated by limitations in consideration, par-
ticularly for Black and Hispanic students.

Each bar in Figure 4 depicts the fraction of students who are matched to one of their
top five48 preferred programs based on their utilities. These are the top five programs they

48Figure A.7 presents the equivalent figure for top ten preferred programs.
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Figure 3: Isolation Indices by Matching—Decomposition
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Notes: Each bar represents isolation index of an ethnic group in a matching. See Table 8 for the
definitions of the matchings.

would have preferred the most if they considered all eligible programs. First, focusing on
Neighborhood matching, we see that only a small fraction of the students are placed in their
top five preferred programs. White students are the most likely to be matched to one of
their preferred programs in this matching. We also observe that school choice—represented
by Estimated—tends to increase the proportion of students placed in their top five preferred
programs compared to Neighborhood matching, regardless of students’ ethnicity. The im-
provement is large: it increases such proportion from about 2.3%–6.7% to 25.5%–28.9% on
average.

We see that limited consideration substantially suppresses the proportion of students
matched to one of their preferred programs. Such effect is larger for the Hispanic and Black
students, which in part is because Asian and White students are more likely to consider their
preferred programs (Table 6 and Figure 2). We further find that programs’ screening policies
are conducive to matching Asian and White students to their preferred programs. This
partially reflects the fact that Asian and White students tend to have better performance
in middle school (Table 1) so that they tend to be more likely to have higher admission
scores for screening programs. We also see that admissions priorities act to place Asian and
White students in their preferred programs. This may reflect that most of the admissions
priorities are based on geographic proximity. Since Asian and White students live closer to
higher-performing programs, they tend to be prioritized for admissions to these programs.

8.2 Personalized School Recommendations: A Counterfactual Analysis

Although the preceding section showed that substantial welfare gains can arise when stu-
dents consider all eligible programs, this is unlikely in practice. As such, we assess various

30



Figure 4: Proportion Matched to Top Five Preferred Programs—Decomposition
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Notes: Each bar represents the fraction of the students matched to their top five preferred programs
based on utilities, accounting for all eligible programs, whether considered or not. See Table 8 and the
discussions for the definitions of the matchings.

feasible interventions involving personalized school recommendations. A judicious use of
both the preference and consideration estimates turns out to be useful for designing effective
interventions.

We explore the simulated impacts of the following interventions, all of which recommend
30 eligible programs per student. The first three interventions only recommend programs
with objective admission chances exceeding 50%,49 while the last intervention (Aggressive
Skipped Best) relaxes this requirement.

• Best intervention proposes the top 30 programs per student in terms of the highest
predicted utilities based on the estimated parameters and the student’s observable
characteristics.
• Least Considered among Best intervention first curates a list of the top 60 programs

based on each student’s predicted utilities. From this list, it recommends the 30 pro-
grams with the lowest student-specific consideration probabilities.
• Skipped Best intervention is akin to Best intervention but skips the programs that are

already likely to be considered (those with estimated student-specific consideration
probabilities greater than 0.5) from recommendations.
• Aggressive Skipped Best intervention parallels Skipped Best intervention except, unlike

the three other interventions, it also recommends programs with objective admission
49This is computed as cutoffij > Eobj [scoreij ]. The admission chance here corresponds to the assignment

chance when the student ranks the program first in the report.
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Figure 5: Proportion Matched to Top Five Preferred Programs—Interventions
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Notes: Each bar represents the fraction of the students matched to their top five preferred programs.
The sample includes both the programs that are considered and those that are not. Refer to the text
for definitions of the matchings.

chance below 50%.

We assume that, after an intervention, students will surely consider the recommended
programs in addition to those they would have already considered based on our estimated
model. Based on our estimates that indicate students are essentially truthfully reporting
among the considered programs, we impose such truthful reporting in this subsection to
facilitate the computation.50

Figure 5 summarizes the results.51 The findings suggest substantial gains from some
interventions. For instance, Aggressive Skipped Best recommendation is estimated to capture
around 20%–36% of the welfare differences between the status quo represented by Estimated
Pref & Consid + Truthful among Consid matching52 and Full Consideration + Truthful
matching.53 This is an encouraging result, recognizing that we recommended only 30 out of
approximately 750 programs.

Notably, both preference and consideration estimates are useful for designing interven-
tions. The highest-performing intervention, Aggressive Skipped Best, employs both pref-

50After intervention, simulating subjectively optimal reports takes longer due to enlarged consideration
sets.

51Figure A.8 shows the impacts on isolation indices and the proportions matched to the top ten preferred
programs. The results on matchings to the top ten preferred programs are qualitatively similar to the results
here. Aggressive Skipped Best intervention slightly increases isolation indices.

52This is the Change to Truthful Among Considered matching in Table 8.
53This is the Change to Full Consideration matching in Table 8. In comparison, Full Consideration above

Half Chance + Truthful matching represents the counterfactual scenario where the students are considering
all eligible programs with objective admission chances exceeding 50%.
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Table 9: Cases of Justified Envy

Asian Black Hispanic White All

Number of school programs viewed with justified envy 3.10 2.57 3.02 3.70 3.02
% students with any justified envy 76.0% 71.3% 72.9% 74.9% 73.3%
% students who view ≥ 5 programs with justified envy 25.0% 20.6% 26.1% 31.8% 25.4%

Notes: The number of school programs viewed with justified envy is the average across students. Estimated
matching (defined in Table 8) was used.

erence and consideration estimates. Nevertheless, the results suggest that consideration
estimates should be employed judiciously. Least Considered Among Best intervention also
uses the consideration estimates in addition to preferences but performs worse than Best
intervention, which solely uses preference estimates.

Aggressive Skipped Best performs better than its non-aggressive counterpart, but the
result presumes that students will actually consider schools with objectively low admission
chances. In practice, the actual impact of the aggressive recommendation may be better or
worse than the results presented here, depending on how optimally students respond to the
aggressively recommended programs.

8.3 Empirical Assessments of the Theory-Targeted Outcomes

Matching Stability and Justified Envy To quantify matching stability, we count the
cases of justified envy; a stable matching must not have any cases of justified envy.54 We
say that a student views an eligible program with justified envy if the student and the
program are not matched to each other, but the student prefers the program to the current
assignment and the program also prefers the student to at least one of its currently assigned
student of the same type or has an empty seat for the same type. Students’ preferences are
determined by the estimated utilities, which are defined regardless of whether the programs
were considered or not.55

Table 9 shows that students are 73% likely to have some school program viewed with
justified envy, thus becoming a part of a blocking pair. However, the average number of
school programs viewed with justified envy is only around three per student. Considering
the presence of over 700 programs in NYC, this number is small.

54This is true if each program has a responsive preference, i.e., if there is a ranking over individual students
with which it wants to fill its seats (Roth, 1985). Programs have responsive preferences in our setting; their
rankings are determined by scoreij . Furthermore, as individual irrationality cannot arise in our model, the
matching is stable if and only if there are no cases of justified envy and therefore has no blocking pair.
Footnote 19 defines individual irrationality and blocking pairs.

55Programs’ preferences are determined by the expected scores Eobj[scoreij ], which is a function of the
admissions priority groups and, for screening programs, the expected screening ranking for each applicant.
Lotteries have the same distribution across applicants and does not affect the expected scores. See Supple-
mental Material A.2 for the definition of expected scores.
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Truthful Reporting As we have seen in Table 7, students typically rank their considered
programs truthfully based on their utilities. Closer inspection allows us to discuss truthful
reporting among all (eligible)—not just considered—programs.

There are two potential types of deviations from the truthful-among-considered reporting:
(1) ranking a lower-utility program above another with higher utility, which is a weakly
dominated strategy (Haeringer and Klijn, 2009); and (2) the exclusion of considered programs
from the length-constraint-binding lists due to a subjectively low (albeit nondegenerate)
probability of admission. The middle panel of Table 7 shows that students seldom play the
first type of deviation: reversals. Note that the reversals can occur only among considered
programs by design. Hence, the middle panel’s figures are also interpreted as the proportions
of non-reversals (truthful ordering) not only among the considered programs but among all
eligible programs.

The bottom panel indicates that students rarely drop their considered programs due to
low admission chances out of fear of wasting their finite number of slots in their reports. This
suggests that the current 12-slot length constraint may not be overly restrictive for students.
However, it is important to note that our model implies that unconsidered programs—those
that students are unaware of or feel out of reach—will always be dropped from reports.
As shown in Table 6, many programs are unconsidered by students. While we do not
definitively distinguish between the two reasons for not considering a program, our findings
indicate that subjective assessments of reachability is also important.56 In Section 7.2, we
have also suggested that Black and Hispanic students seem to be perceiving the highest
selectivity programs as out of reach and therefore not considering them (see the discussions
about Figure 2f), which may lead them to drop such programs from their reports.

9 Conclusion
In this paper, we use data on school applications and admissions from the NYC DOE to
examine the impacts of its centralized public high school choice procedure for the 2016–
17 academic year. We develop and estimate a model of student application behavior that
allows for two types of optimization frictions: applicants may consider only a limited set of
school options and may have incorrect beliefs about admission chances. Latent preferences,
consideration, and beliefs are revealed through observational data. Sources of identification
include the instruments that shift consideration but are excluded from preferences, whether
and where a school program is ranked in the submitted reports, and the assumption that
the researcher can specify, for each student, a set of school programs surely considered by

56For instance, Table 4 showed that admissions priority is a key determinant of inclusion of a program in
the submitted report and Table A.2 showed that objective admission probability positively affects consider-
ation chances.

34



the student—e.g., highly likely high school programs near their home or middle school. We
have also developed nonparametric identification results that further clarify the sources of
identification.

Compared to neighborhood-based school program allocation, school choice slightly im-
proves racial integration and markedly boosts the number of students matched to their
preferred schools across all races. We find that admissions priorities and screening poli-
cies tend to segregate races. We also show that limited consideration results in substantial
negative welfare costs, especially for Black and Hispanic students. To counter the welfare
loss, we investigate the potential impacts of personalized school recommendations based
on the utilities and consideration probabilities predicted through our model. We find that
certain recommendation policies can significantly counteract the negative welfare effects of
limited consideration. Our analysis further suggests that the students rank their considered
programs in an essentially truthful manner.

Some key aspects highlighted in our paper align with the NYC DOE’s recent policies
after our analysis. Some NYC DOE schools adopted “Diversity in Admissions” policies,
which prioritize admissions for students of lower socioeconomic status and English Language
Learner students. The NYC DOE also transitioned from a physical high school directory
to an online version, aiming to facilitate better navigation for applicants and provide more
timely and accurate information.
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A Additional Tables and Figures

Table A.1: Regression of Page Rank on School Characteristics

Dependent variable:

Page rank

Constant 52.965 (50.340)

Average grade 8 math proficiency (std.) −5.129 (3.738)

Graduation rate 41.384∗ (23.927)

Attendance rate −54.318 (60.453)

College/career rate 8.453 (21.425)

Percent of students who feel safe 16.884 (29.427)

9th grade seats −0.007 (0.015)

Percent Asian −3.557 (19.134)

Percent Black 1.555 (8.762)

Percent White −19.579 (18.452)

Observations 352
R2 0.037
F Statistic 1.456 (df = 9; 342)

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in paren-
theses. Standardized values are indicated by (std.). College/career
rate indicates the proportion of students who graduated from high
school four years after they entered 9th grade and then enrolled in
college, a vocational program, or a public service program within
six months of graduation. Each school has equal weight regardless
of class size. The sample excludes the nine specialized high schools
and schools with missing data.
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Figure A.1: Schools Nearby, Applied to, and Matched, by Ethnicity

Notes: Nearby schools are the schools within one mile from student’s home. The applied and assigned
schools are from the main round of applications. Pct_stu_safe denotes the proportion of students who
have reported that they feel safe in the school. College_career_rate indicates the proportion of students
who graduated from high school four years after they entered 9th grade and then enrolled in college, a
vocational program, or a public service program within six months of graduation.
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Table A.2: Estimated Parameters by Race

Parameter Asian Black Hispanic White

Preference

Subsidized lunch 0.13 (0.01) 0.17 (0.01) −0.01 (0.01) 0.20 (0.01)
Lives in Brooklyn −0.51 (0.02) −0.29 (0.02) 0.00 (0.02) −0.52 (0.02)
Lives in Manhattan −0.80 (0.02) −0.19 (0.02) −0.00 (0.02) −1.03 (0.02)
Lives in Queens −0.75 (0.02) −0.30 (0.02) −0.16 (0.02) −0.37 (0.03)
Lives in Staten Island 0.31 (0.05) 0.01 (0.04) 0.14 (0.04) −0.33 (0.03)
High is middle 1.80 (0.12) 1.71 (0.06) 1.87 (0.06) 1.51 (0.09)
Distance to school −0.07 (0.01) −0.06 (0.00) −0.06 (0.00) −0.07 (0.00)
Arts −0.95 (0.04) −0.21 (0.02) −0.59 (0.02) −0.79 (0.02)
STEM −0.19 (0.02) −0.07 (0.02) −0.14 (0.02) −0.13 (0.03)
College/career rate 0.70 (0.11) 0.90 (0.08) 0.74 (0.08) 0.75 (0.12)
Avg. grade 8 math proficiency (std.) 0.38 (0.02) 0.15 (0.02) 0.16 (0.02) 0.36 (0.02)
Proportion Asian 0.15 (0.08) −0.61 (0.10) −1.38 (0.09) −0.63 (0.10)
Proportion Black −1.90 (0.08) −1.65 (0.06) −1.95 (0.06) −1.84 (0.09)
Proportion Hispanic −1.45 (0.08) −1.92 (0.05) −1.24 (0.06) −1.32 (0.08)
Proportion White −0.72 (0.09) −1.22 (0.10) −0.75 (0.10) 0.07 (0.09)

Standard deviation of εvij 1 1 1 1

Consideration

Subsidized lunch −0.14 (0.01) −0.25 (0.02) 0.02 (0.02) −0.26 (0.01)
Lives in Brooklyn −0.41 (0.02) −0.10 (0.02) −0.21 (0.02) −0.09 (0.02)
Lives in Manhattan −0.26 (0.03) −0.22 (0.03) −0.23 (0.02) 0.16 (0.04)
Lives in Queens −0.48 (0.02) 0.04 (0.03) −0.13 (0.02) −0.51 (0.02)
Lives in Staten Island −0.54 (0.04) −0.11 (0.04) 0.02 (0.05) −0.22 (0.03)
Borough match 0.73 (0.02) 1.15 (0.02) 0.99 (0.02) 0.76 (0.02)
High is near middle 0.62 (0.03) 1.49 (0.09) 1.40 (0.07) 0.72 (0.03)
Distance to school −0.15 (0.00) −0.04 (0.00) −0.08 (0.00) −0.15 (0.00)
Arts 0.05 (0.07) −0.22 (0.03) 0.21 (0.04) 0.13 (0.04)
STEM 0.42 (0.03) 0.03 (0.03) 0.10 (0.03) 0.13 (0.03)
College/career rate −0.19 (0.15) 0.24 (0.13) 1.13 (0.12) −0.31 (0.13)
Avg. grade 8 math proficiency (std.) 0.17 (0.02) 0.15 (0.02) −0.03 (0.02) 0.22 (0.02)
Page rank in borough (std.) −0.02 (0.01) −0.08 (0.01) −0.08 (0.01) 0.02 (0.01)
Proxy of objective admission probability 0.08 (0.01) 0.21 (0.01) 0.13 (0.01) 0.18 (0.01)
Proportion Hispanic −0.07 (0.12) −0.88 (0.10) −1.51 (0.09) −0.54 (0.10)
Proportion Black −0.29 (0.13) −0.83 (0.10) −2.07 (0.09) −0.63 (0.10)
Proportion Asian −0.67 (0.10) −2.84 (0.12) −2.08 (0.11) −1.20 (0.09)
Proportion White −0.17 (0.11) −1.81 (0.12) −2.40 (0.11) −0.15 (0.10)

Standard deviation of εcij 1 1 1 1

Beliefs

σethiν 10.68 (1.81) 12.00 (0.34) 8.03 (2.51) 9.36 (1.07)
βethi
rank −0.56 (0.23) −3.89 (0.16) −0.00 (0.12) −0.00 (0.16)

No. student-program pairs 2,216,059 1,999,245 2,129,397 2,564,323
No. surely considered student-program pairs 5,046 6,845 7,093 1,966
No. students 4,000 4,000 4,000 4,000

Notes: High is middle is an indicator of whether the student’s middle school is the same as the high school. College/career rate
indicates the proportion of students who graduated from high school four years after they entered 9th grade and then enrolled in
college, a vocational program, or a public service program within six months of graduation. High is near middle is an indictor
of a high school program being within one mile from the student’s middle school. Standardized values are indicated by (std.).
Intercepts are omitted for preference and consideration parameters as the ethnic compositions approximately sum to one. A
random sample of 4,000 students was used for each race. The counts of (surely considered) student-program pairs include only
those with |ri\{j}| < 11 for the reasons explained in 7.1.
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Figure A.2: Preference and Consideration and School Performance
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Notes: For each ethnicity, each point in the scatter plot denotes a program. Figures (a) and
(b) respectively depicts the within-race average probability of a school being preferred to the
outside option and being considered. College/career rate indicates the school’s proportion of
students who graduated from high school four years after they entered 9th grade and then
enrolled in college, a vocational program, or a public service program within six months of
graduation.
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Figure A.3: Summary of Preference Estimates Using Only Surely Considered Programs
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0)

Notes: For each ethnicity, each point in the scatter plot denotes a program. Figure (a)
depicts the within-race average probability of a school being preferred to the outside option.
Figure (b) presents the within-race average predicted latent values of c̃ij , where c̃ij adjusts
cij for the fact that sure consideration implies cij = ∞ by construction (see footnote 44).
Figure (c) shows the latent values when the distance to school is set to zero. The estimates
are obtained using only the surely considered programs, i.e., by maximizing the second sum
in the partial log-likelihood expression E.1.
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Figure A.4: Characteristics of Considered Schools by Ethnicity
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Notes: College/career rate indicates the proportion of students who graduated from high school four years
after they entered 9th grade and then enrolled in college, a vocational program, or a public service program
within six months of graduation.
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Figure A.5: Slope of Predicted Utilities against Rank in Report
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(a) Among 11-program reports
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(b) Among 12-program (full) reports

Notes: The figures overlay the plots of mean utilities against the rank at which the program
is listed. The mean utilities reflect the within-race average of predicted utilities (i.e., net of
εvij) normalized by the coefficient on the race-specific coefficient on distance.

Figure A.6: Percent of Own Ethnicity by Matching, Model-Free
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Notes: For each ethnicity and matching, the plot represents the kernel-smoothed density of the pro-
portion of students with the same ethnicity in the students’ assigned programs. The kernel density
estimation uses Gaussian kernel with bandwidth 10, and is boundary corrected. See Table 8 for the
definitions of the matchings.
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Figure A.7: Proportion Matched to Top Ten Preferred Programs—Decomposition
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Figure A.8: Impacts of Information Interventions—Top Ten Preferred Programs and Isola-
tion Indices
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matching.
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B Deferred Acceptance Mechanism in NYC
In the 2016–2017 school year, the DOE ran two rounds of DA assignments for the traditional
(non-specialized) high schools and one round of DA assignment for the nine specialized high
schools. In our analysis, we focus on the first (main) round for the non-specialized high
schools. This is the “main” round in the sense that approximately 85% of the final matches
coincide with the match in this round.

Using the students’ submitted rankings over the school programs and the programs’
rankings over the students, the DA algorithm (Gale and Shapley, 1962; Abdulkadiroğlu
and Sönmez, 2003) matches the students to the school programs according to the following
procedure.

• Step 1: Each applicant proposes to his first-ranked school program, if any. Each school
program sorts the proposers according to its rankings and tentatively accepts all the
highest-ranking proposers up to its capacity. It rejects any other proposers.

• Step k ≥ 2: Each applicant who was not tentatively accepted by any program in
Step (k − 1) proposes to his highest-ranked school program that has not previously
rejected him, if any. Each school program sorts the new proposers and the applicants
tentatively accepted previously according to its rankings and tentatively accepts all
the highest-ranking applicants up to its capacity. All the other proposers are rejected.

The algorithm stops when there are no proposing students. Each student is assigned his final
tentative assignment. In NYC match, the school programs have separate seats (capacities)
for students with and without disabilities. Therefore, DA algorithms are run separately for
the two student groups defined by their disabilities type.

C Identification: Details

C.1 Nonparametric Identification

In this section, we provide sufficient conditions for the nonparametric identification of the
model. The main results are provided here, and Appendix C.2 provides additional results
under stronger and weaker sets of assumptions. Proofs are in Appendix C.4.

In stating the nonparametric identification results, we do not make any parametric as-
sumption about utilities, latent consideration variables, and beliefs (vi, ci, pi) ≡

(
(vij)j∈J ,

(cij)j∈J , (p
r
ij)r∈R(J ),j∈J

)
as made in Section 6. Furthermore, we do not assume that the

maximum allowed list length, denoted L, has to equal 12.
On the other hand, we do assume the following for every result. First, we assume that

beliefs are generated by students making anticipations about differences in their scores and
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cutoffs, in the sense that Equation 4.2 holds. Second, we assume that perceived scores are
increasing in submitted rank as in Section 4. Third, we assume that the distribution of vi|zi
is continuous for every zi ∈ supp(zi) and that qijk ≡ Pi(d̃iffij(k) > 0) ∈ (0, 1) for every
considered schools.

To discuss the results, we define two concepts: an extreme consideration shifter excluded
from preferences and a special regressor with large support (Thompson, 1989; Lewbel, 2000).

Definition 1. Let zi ≡ (ai, z
−
i ). A J−dimensional random vector ai is called an extreme

consideration shifter excluded from preferences if vi |= ai conditional on z−i and, for
all z−i in its support, there exist some known ā(z−i ) ∈ supp(ai|z−i ) such that P

(
cij > 0|aij =

āj(z
−
i )
)

= 1.

In the empirical setting, the role of an extreme consideration shifter excluded from pref-
erences is jointly played by surely considered sets and the excluded consideration shifters,
such as page rank and distance from middle school. However, they each play an imperfect
role; surely considered sets only move certain schools’ consideration probabilities for each
student, and the excluded consideration shifters do not move consideration probabilities to
1, i.e., to the extreme.1

Definition 2. A random vector zyi is called a special regressor for yi with large support
conditional on xi if yi = ỹi − zyi with ỹi |= zyi conditional on xi and supp

(
zyi |xi

)
= RK for

all xi in its support, where K is the dimension of yi.

In the empirical setting, the role of a special regressor is played jointly2 by any exogenous
(i, j)−level observables, including distance to school, and the interactions between school
characteristics and the student-level observables.3

We first establish the nonparametric identifiability of preference. Proposition C.1 shows
that the joint distribution of utilities is nonparametrically identified with a large-support
special regressor for the utilities and an extreme consideration shifter.

Proposition C.1 (Identification of preferences). Suppose that we observe:

(a) an extreme consideration shifter excluded from preferences, named ai, and

(b) a special regressor for vi, named zvi , with large support conditional on zi\(zvi , ai).
1To complement our main result, Proposition C.5 only assumes the presence of surely considered sets.
2We conjecture that results in Berry and Haile (2024) may be used to formally show how different

variables can form an index that mimics the role of a special regressor.
3Note that most results—except case (ii) of Proposition C.4, which uses identification-at-infinity

argument—can be extended to allow for limited support of the special regressor at the cost of identify-
ing the distribution of the utilities or the latent variables for consideration on limited support.
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Then, the joint distribution of utilities conditional on observables, P
(
vi ≤ v

∣∣zi), is identified
for almost all (v, zi) ∈ supp(vi, zi).4

All proofs are in Appendix C.4. Intuitively, one can use the extreme consideration shifter
to push the consideration probability of every school to 1, in which case the probability of
listing schools becomes a sole function of the utilities. One can then use the special regressor
to “trace out” the distribution of the utilities (Agarwal and Somaini, 2018). This distribution
of the utilities is not conditioned on the value of the extreme consideration shifter, as it was
assumed to be conditionally independent of the utilities. Note that no assumption was made
about allowed list length.

Now we turn to the identification of consideration. Proposition C.2 states that the
distribution of consideration indicators c∗ij := 1(cij > 0) can be nonparametrically identified
with a special regressor with large support, given that the distribution of utilities are already
identified (potentially through Proposition C.1). It also assumes that the allowed list length L
equals the number of schools J , i.e., an applicant can list arbitrarily many schools.5 The joint
distribution of consideration indicators is point-identified if the utilities vi are independent
of latent consideration variables ci conditional on observables. It is partially identified if the
conditional independence fails.

Proposition C.2 (Identification of consideration). Suppose that P
(
vi ≤ v|zi = z

)
is iden-

tified for almost all (v, z) ∈ supp(vi, zi). Suppose that we observe a special regressor for ci,
named zci , with large support conditional on zi\zci . Suppose also that L = J . Then,

(i) if ci is independent of vi conditional on zi, the joint distribution of consideration indi-
cators conditional on observables, P

(
c∗i ≤ c∗

∣∣zi), is identified for almost all (c∗, zi) ∈
supp(c∗i , zi).6

(ii) if ci is not independent of vi conditional on zi, P
(
(c∗ij)j∈A ≤ c∗

∣∣(vij)j∈A > 0, zi
)
is

identified for almost all (c∗, zi) ∈ supp
(
(c∗ij)j∈A, zi

)
and for all A ⊆ J .

Remark. In relation to Proposition C.1, it is allowed that ai = zci or zci = zvi .7

The intuition for part (i) is as follows. Given that an applicant can write an arbitrarily
long list, whether to list a school is a function of only utilities and consideration. However,
knowing the distribution of the utilities already, the probability of schools being listed is

4If the large support assumptions on the special regressors are weakened, then P
(
vi ≤ v

∣∣zi) is also
identified on a limited support.

5Proposition C.4 presents a result with length constraints with stronger data requirements.
6If the large support assumptions on the special regressors are weakened, then P

(
c∗i ≤ c∗

∣∣zi) are also
identified on a limited support.

7On the other hand, it is not possible that ai = zci = zvi .
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informative only about consideration. The special regressor then traces out the distribution
of ci, the latent consideration variable, and therefore the distribution of c∗i = 1(cij > 0).

Now we turn to the identification of the beliefs about assignment probabilities. To present
this result, we first define equivalent classes of beliefs. Two beliefs are behaviorally equivalent
if they lead to the same reporting behavior conditional on any realization of the utilities and
the consideration sets:

Definition 3. Two beliefs {prj}j∈J ,r∈R(J ) and {p
′r
j }j∈J ,r∈R(J ) are behaviorally equivalent

if for all v ∈ RJ and Ci ⊆ J , arg maxr∈R(Ci) v · pr = arg maxr∈R(Ci) v · p
′r.

where (pr) = (prj)j∈J and similar for (p′r). The notion of behavioral equivalence relates to
the notion of normalization and is distinct from observational equivalence.

Here we state the identification result on beliefs, which holds under a restricted setting.

Proposition C.3 (Identification of beliefs). Suppose that P
(
vi ≤ v, c∗i ≤ c∗|zi = z

)
is

identified for every (v, c∗, z) ∈ supp(vi, c
∗
i , zi). Suppose that either (1) L = J = 2, or (2)

L = 1. Suppose also that beliefs are constant given observables, i.e. prij = prj(zi) ∀(i, j, r).
Then, beliefs {prj(zi)}j,r are identified up to behaviorally equivalent classes.

C.2 Supplementary Results on Nonparametric Identification

Proposition C.4 (Identification of preferences and consideration with ideal data). Suppose
that we observe zi ≡ (zvi , z

c
i , z
−
i ) where (zvi , z

c
i ) is a special regressor for (vi, ci) with large

support conditional on z−i . Then,

(i) if L = J , P
(
vi ≤ v, c∗i ≤ c∗|zi = z

)
is identified for every (v, c∗, z) ∈ supp(vi, c

∗
i , zi).

(ii) if L < J , P
(
c∗i ≤ c∗|zi = z

)
is identified for every (c∗, z) ∈ supp(c∗i , zi) and P

(
vi ≤

v|zi = z
)
is identified for every (v, z) ∈ supp(vi, zi).8

Proposition C.5 (Identification of preferences with surely considered sets). Suppose that we
observe a special regressor for vi, named zvi , with a large support conditional on z−i . Suppose
also that Si ≡ S(zi) is constant with respect to zvi . Then,

(i) if L = J , P
(
(vij)j∈S(zi) ≤ v|zi

)
is identified for all (v, zi) in its support.

(ii) if L < J , then for all x, z = (zv, z−), and A ⊆ S(z) with |A| ≤ L, P
(
(vij)j∈A ≤ x|z

)
is set-identified by an interval. Specifically, the interval has the endpoints given by
P(|ri| < L, j 6∈ ri ∀j ∈ A|zvi = zv − x, z−) and P(|ri| < L, j 6∈ ri ∀j ∈ A|zvi =

zv − x, z−) + P(|ri| = L, ri ∩ A = ∅|zvi = zv − x, z−), hence of the length P(|ri| =

L, ri ∩ A = ∅|zvi = zv − x, z−).
8In the case of L < J , a stronger result as in the case for L = J is available following a proof similar to

Lemma 1 of Agarwal and Somaini (2022).
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C.3 Lemmas

These lemmas are used in the proofs of the observations and the propositions. We define a
school to be acceptable if vij > 0 and unacceptable if vij < 0.

Lemma C.1. Consider a list r that contains an unacceptable program before an acceptable
program, and the lowest-ranked program is an acceptable program. Then, r gives a weakly
lower expected utility than an alternative list that switches the lowest-ranked unacceptable
program with the program that gives the maximum utility among the programs that follow
this lowest-ranked unacceptable program.9

Lemma C.2 (Never write an unacceptable program). For any list r that contains a con-
sidered but unacceptable program, there is an alternative list that contains no unacceptable
program and gives strictly higher expected utility.

C.4 Proofs

Proof of Lemma C.1. By assumption, the list r has an unacceptable program before an
acceptable program. Let j− denote the lowest-ranked unacceptable program in the list.
Then, there are some programs that follow j− and these programs are all acceptable. Let
the utility-maximum of these programs be indicated by jmax. Then, the report r reads:
r = ( · · ·︸︷︷︸

A

, j−, · · ·︸︷︷︸
B

, jmax, · · ·︸︷︷︸
C

) where A, B, and C denote (potentially empty) ordered sublist

of the programs in each respective position. Consider an alternative list r′ that switches jmax

with j−, as in the statement: r′ = ( · · ·︸︷︷︸
A

, jmax, · · ·︸︷︷︸
B

, j−, · · ·︸︷︷︸
C

).

Representing an outcome in the relevant probability space of Pi by ω, it suffices to show
that r′ gives weakly higher utility than r for every ω, i.e., viµ(i;r)(ω) ≤ viµ(i;r′)(ω) for all ω,
where µ(i; r) is the assignment of i in the case that i reports r. To see this, suppose not:
there is ω such that viµ(i;r)(r;ω) > viµ(i;r′)(r

′;ω). Then, it must be that the student is rejected
at all the A programs under this ω regardless of submitting r or r′, i.e.,

c̃utoffj(ω) < s̃coreij(r(j);ω) ≡ s̃coreij
(
r′(j);ω

)
∀j ∈ A

where r(j) and r′(j) denote the ranks of program j in r and r′, respectively. This is because
otherwise, he gets into the same program regardless of reporting r or r′ and obtains the same
utility. It is impossible that he gets rejected in one report but not in the other report—his
scores for any j ∈ A are exactly the same in the two reports as the submitted rank of any
j ∈ A in the two reports are the same. This is because the subjective assessment of scores
is restricted to depend only on certain aspects of the report—i.e., the rank.

9The lemma is similar to what appears in the proof of Proposition 3 (ii) in He (2017).
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Also, it must be that he gets rejected by j− under r. Otherwise, given that the student
is rejected by all programs in A, this is the worst that can happen to him under r or r′

because B and C can never have an unacceptable program. Also, it must be that he gets
rejected by jmax under r′; otherwise, this is the best that can happen to him under r or
r′ and so there is no way that allocation under r will be strictly preferred to jmax. Thus,
c̃utoffj−(ω) < s̃coreij−

(
r(j−);ω

)
and c̃utoffjmax(ω) < s̃coreijmax

(
r′(jmax);ω

)
.

Similarly, it must be that he fails to make the cutoffs (in either reports) by all programs
in B. Otherwise, he gets same utility under the two reports. Note that he makes the cutoff
in any of these programs in B by submitting r iff he does so in r′; the score for the program
is the same under the two reports.

Further, it must be that he is rejected by jmax under r and j− under r′. This follows
from the assumption that perceived scores are monotonic in the submitted rank and what
we had before: c̃utoffj−(ω) < s̃coreij−

(
r(j−);ω

)
≤ s̃coreij−

(
r′(j−);ω

)
and c̃utoffjmax(ω

)
<

s̃coreijmax

(
r′(jmax);ω

)
≤ s̃coreijmax

(
r(jmax);ω

)
.

By the same reasoning, it must be that he fails to make the cutoffs (in either reports)
by all programs in C. Otherwise, he gets same utility under the two reports. Note that he
makes the cutoffs in all of these programs in B by submitting r iff he does so in r′; the scores
are the same under the two reports.

Then, they get rejected by all programs in either of the two reports, and is placed
into outside option, in which they derive the same utility. This contradicts viµ(i;r)(r;ω) >

viµ(i;r′)(r
′;ω) we started with.

Proof of Lemma C.2. If r ends with an unacceptable program, removing it weakly increases
expected utility. Continuously drop any unacceptable programs from the end, each time
weakly increasing expected utility. If unacceptable programs are interspersed, (repeatedly)
apply Lemma C.1 to switch the lowest-ranked unacceptable program with the lower-ranked
highest-utility acceptable programs, moving them to the end for removal, each time weakly
increasing expected utility. This process, repeated until all unacceptable programs are re-
moved, results in a list providing strictly higher expected utility compared to the original r; it
has at least one instance of removing a considered (and therefore positive-assignment-chance)
unacceptable program.

Proof of Observation 1. Let L denote the maximum allowed length of the list. We show
that the first statement holds. To show that j ∈ ri implies both j ∈ Ci and vij > 0, we
show the contrapositive. First, if j /∈ Ci, j cannot be on ri by definition of consideration.
Second, suppose that vij < 0 and j ∈ Ci. By Lemma C.2, such a list with an unacceptable
but considered program cannot be (subjectively) optimal. Suppose now that vij > 0 and
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j ∈ Ci, but j /∈ ri. Then one can strictly gain by adding j on the bottom of the list, which
contradicts subjective optimality of ri. The strict relation comes from j ∈ Ci; a considered
program has (subjectively) positive admission chance upon listing. Addition of a program
is possible since ri has not exhausted all the available slots.

We now show that the second statement holds. The second statement is equivalent to
the following statement: ri has exactly L programs if and only if {j ∈ J |vij > 0, j ∈ Ci}
has L programs or more. Suppose first that |ri| = L but |{j ∈ J |vij > 0, j ∈ Ci}| < L.
Because all programs in ri must be considered by definition, there must be some programs
in ri that is subjectively reachable but is unacceptable. By Lemma C.2, such a list cannot
be subjectively optimal. Suppose now that |{j ∈ J |vij > 0, j ∈ Ci}| ≥ L but |ri| < L. Then,
there must be some program j /∈ ri such that vij > 0 and j ∈ Ci. Adding j at the bottom of
the list gives strictly higher payoff, contradicting that ri is subjectively optimal.

Proof of Proposition C.1. Implicitly condition everything on zi\(zvi , ai). Take any zv ∈
supp(zvi ) and the according ā ≡ (ā1(z

v), · · · , āJ(zv)). Note that P(ci > 0|ā) = 1 implies
P(ci > 0|zvi , ā) = 1 almost surely. Then, almost surely,

P(j /∈ ri ∀j = 1, · · · , J |zvi = zv, ai = ā)

= P(cij < 0 or vij < 0 ∀j = 1, · · · , J |zv, ā) by Observation 1 with general L

= P(vij < 0 ∀j = 1, · · · , J |zv, ā) by P(ci > 0|zv, ā) = 1

= P(ṽi < zv). by vi |= ai|zvi and ṽi |= zvi

where generalizability of Observation 1 to L 6= 12 is immediate from its proof. As the first
line represents what is observed, the last line is identified almost surely for zv ∈ RJ by
the large support assumption on zvi . Then, by the independence assumptions on ai and zvi ,
P(vi > x|zv, a) = P(vi > x|zv) = P(ṽi > x + zv). Therefore, P(vi > x|zv, a) = P(vi > x|z) is
identified for almost every (x, z) ∈ supp(vi, zi).

Proof of Proposition C.2. I will implicitly condition everything on zi\zci . I first prove (i).
Take any zc ∈ supp(zci ). Note that

P(j ∈ ri ∀j = 1, · · · , J |zci = zc)

= P(ci > 0, vi > 0|zc) by Observation 1 with general L

= P(ci > 0|zc)P(vi > 0|zc) by ci |= vi|zci
= P(c̃i > zc)P(vi > 0|zc) by c̃i |= zci

where generalizability of Observation 1 to L 6= 12 is immediate from its proof. The first line
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is observed and P(vi > 0|zc) is known on almost all zc ∈ supp(zci ) by assumption. Thus,
P(c̃i > zc) is identified almost surely. By the assumptions on zci , P(ci > x|zc) = P(c̃i > x+zc)

and thus P(ci > x|zc) is identified for almost all (x, zc) ∈ supp(ci, z
c
i ). The result follows

from the definition of c∗ij := 1(cij > 0).
The proof of (ii) follows analogously by noting that P(j ∈ ri ∀j ∈ A|zci = zc) =

P((c̃ij)j∈A > (zcj)j∈A|(vij)j∈A > 0)P((vij)j∈A > 0|zc) and that P(j ∈ ri ∀j ∈ A|zci = zc)

is observed while P((vij)j∈A > 0|zc) is assumed identified.

Proof of Proposition C.3. Define v∗ij = vij
(
2 · 1(vij > 0, c∗ij = 1)− 1

)
. Note first that the as-

sumptions imply the distribution of v∗i ≡ (vij)j∈J is known. Note also that arg maxr∈R(Ci) v ·
pr = arg maxr∈R(J ) v

∗ ·pr. Therefore, two beliefs p ≡ {prj}j∈J ,r∈R(J ) and p′ ≡ {p
′r
j }j∈J ,r∈R(J )

are behaviorally equivalent if and only if for all v ∈ RJ , arg maxr∈R(J ) v·pr = arg maxr∈R(J ) v·
p
′r. Let Cr(p) ≡ {v ∈ RJ |r = arg maxr∈R(J ) v · pr} for each r ∈ R(J ). Then, two beliefs p

and p′ are behaviorally equivalent if and only if Cr(p) = Cr(p′) for all r ∈ R(J ).
Proof under assumption (1): L = J = 2.

Implicitly condition on everything on zi. From Observation 1, it is straightforward to
verify that

(
Cr(p)

)
r∈R(J )

is pinned down by a single number δ ≡ p
(1)
1 −p

(2,1)
1

p
(2)
2 −p

(1,2)
2

. This can be

checked by noting that C∅(p) = {(v1, v2) ∈ R2|v1, v2 ≤ 0}, C(1)(p) = {(v1, v2) ∈ R2|v1 ≥
0, v2 ≤ 0}, C(2)(p) = {(v1, v2) ∈ R2|v1 ≤ 0, v2 ≥ 0}, C(1,2)(p) = {(v1, v2) ≥ 0|v2/v1 ≤ δ, },
and C(2,1)(p) = {(v1, v2) ≥ 0|v2/v1 ≥ δ}. By assumption, everyone (in the subgroup defined
by the observables) shares the common belief p = {prj}j∈J ,r∈R(J ) and therefore P({vi2/vi1 ≥
δ} ∩ {vi ≥ 0}) = P(vi ∈ C(2,1)(p)) = P(ri = (2, 1)). As P(vi ≤ v) is known, the left-hand
side of the equation is calculable as a function of δ. On the other hand, the right-hand side
is observable. Thus, belief is identified.
Proof under assumption (2): L = 1.

By assumption, everyone has the same belief, which I denote by p. Note that C(j)(p) =

{v ∈ RJ |j = arg maxk∈0,1,...,J p
(k)
k vk} = {v ∈ RJ |j = arg maxk∈0,1,...,J

p
(k)
k

p
(1)
1

vk} for j = 1, . . . , J

and C∅(p) = {(v1, v2) ∈ R2|v1, v2 ≤ 0}. Thus, the Cr(p)′s are completely characterized by
the vector p̃ ≡ (p̃2, · · · , p̃J) ≡ (p2

p1
, . . . , pJ

p1
). Therefore, belief is identified if p̃ is identified.

Now we can use Corollary 1 of Berry, Gandhi, and Haile (2013), denoted BGH. In their
notation, x = p̃, X ∗ = X = RJ−1++ , and σ(p̃) = (σ2(p̃), · · · , σJ(p̃)) : X ⊆ RJ−1 → RJ−1

where σj(p̃) = P(vi∈C(j)(p̃))∑J
k=1 P(vi∈C(k)(p̃))

for j = 1, . . . , J . Note that the school j = 1 now plays the
role of BGH’s “outside option” (which is denoted j = 0 in their notation).10 To see that
the corollary applies, note first that X is a Cartesian product. Moreover, σj(p̃) is strictly

10The outside option j = 0 as considered in my model is left out of the discussion here because their
choice probability does not change according to p.
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decreasing in p̃k for all j = {1, . . . , J} and for all k 6= 1, j, as (1)
∑J

k=1 P(vi ∈ C(k)(p̃)) is
constant over p̃, and (2) P(vi ∈ C(j)(p̃)) is strictly decreasing because vi has full support.
Thus, BGH’s Corollary 1 applies and σ(p̃) is injective.

Proof of Proposition C.4 . I first prove case (i). Take any z ≡ (zv, zc, z−) such that zv ∈ RJ ,
zc ∈ RJ , and z− ∈ supp(z−i ). Then, P

(
j ∈ ri ∀j = 1, · · · , J |zvi = zv, zci = zc, z−i = z−

)
=

P(ṽi − zv > 0, c̃i − zc > 0|zv, zc, z−) = P(ṽi > zv, c̃i > zc|z−) = P(−ṽi < −zv,−c̃i < −zc|z−)

and since the first expression is observed for any zv ∈ RJ , zc ∈ RJ , and z− ∈ supp
(
z−i
)
,

the last expression is identified for any such (zv, zc, z−). Thus, the joint distribution of
(−ṽi,−c̃i) conditional on z−i , and therefore the joint distribution of (ṽi, c̃i) conditional on
z−i , is identified on the support of z−i . As vi = ṽi−zvi and ci = c̃i−zci with (ṽi, c̃i) |= (zvi , zci )|z−i
and zi ≡ (zvi , z

c
i , z
−
i ) is observed, the joint distribution of (vi, ci) conditional on zi is identified

for every zi in its support.
To show the first part of case (ii), note that P

(
ri = ∅|zvi = zv, zci = zc, z−i = z−

)
=

P(vij ≤ 0 or cij ≤ 0 ∀j ∈ J |zv, zc, z−) = P(ṽij ≤ zv or c̃ij < zc ∀j ∈ J |z−). Now, send all
of the elements in zc to negative infinity. By the dominated convergence theorem, the last
expression converges to P(ṽij ≤ zv ∀j ∈ J |z−). Note that zvi is a special regressor for vi
with a large support. Use the special regressor similarly as before to identify the distribution
of vi. The second part of case (ii) follows similarly by sending all of the elements in zv to
negative infinity.

Proof of Proposition C.5. Proof of part (i) follows by noting that P(ri∩S(zi) = ∅|zi = z) =

P((vij)j∈S(zi) ≤ 0|zi = z) = P(ṽij ≤ zvij ∀j ∈ S(zi)|zvi = zv, z−i = z−) = P((ṽij)j∈S(zi) ≤
(zvj )j∈S(zi)|z−i = z−) and using the independence of the special regressor to recover the
distribution of (vij)j∈S(zi)|zi.

I now show part (ii). Take zi = z and A ⊆ S(z) with |A| ≤ L. Implicitly condition
everything on z. We shall use the fact that, for any two events A and B, P(A∩B) ≤ P(A) ≤
P(A ∩ B) + P(Bc). Consider the events A = {vij < 0 ∀j ∈ A} and B = {|ri| = L, ri ∩ A =

∅}c ≡ {|ri| < L} ∪ {ri ∩ A 6= ∅}. We have A ∩ {ri ∩ A 6= ∅} = ∅ by Lemma C.2. Therefore,
A ∩ B = A ∩ {|ri| < L} = {vij < 0 ∀j ∈ A, |ri| < L} = {j 6∈ ri ∀j ∈ A, |ri| < L}, where the
last equality is due to Observation 2. Note that both P(j 6∈ ri ∀j ∈ A, |ri| < L) and P(B)

are observable. Therefore the interval that bounds P(A) ≡ P(vij < 0 ∀j ∈ A) = P(ṽij <

zvij ∀j ∈ A) is identified and given by[
P(j 6∈ ri ∀j ∈ A, |ri| < L), P(j 6∈ ri ∀j ∈ A, |ri| < L) + P(|ri| = L, ri ∩ A = ∅)

]
,

having the length P(|ri| = L, ri ∩ A = ∅). One can then use the special regressor similarly
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as before to bound P
(
(vij)j∈A ≤ x|z

)
.

D Construction of Figures and Tables
Table 1 shows the State Reading Category, based on 7th-grade reading scores from the New
York State English Language Arts test. The categories are ”Low” (bottom 16%), ”Middle”
(middle 68%), and ”High” (top 16%). For non-public school students, categories are deter-
mined by another standardized assessment for admissions to Educational Option programs.
Neighborhood income, derived from students’ ZIP codes, uses median household income
from the 2013–2017 U.S. Census Bureau’s American Community Survey five-year estimates
in 2017 dollars.

Tables 3, 4, and 5 control for the following variables. Student-specific variables are
ethnicity, sex, subsidized lunch, math score, disability status, and borough. Program- or
school-specific variables include page rank (for Table 5), coed, school borough, graduation
rate, the percentage of students who enroll in college or career programs, attendance rate,
admissions method, interest area, the percentage of students who feel safe on the premises,
and (log of) the number of enrolled students. Match-specific variables are the priority group
(for Table 3 and 5), the interaction between sex and coed, whether the student’s borough
matches the school’s borough, whether the student’s feeder school is close (less than 0.5
miles) to the high school, whether the high school is the feeder school, the distance (between
the student and the school), its square, and the student’s own ethnicity interacted with the
percentages of each ethnicity group in the school. In Table 4, we use predicted priority
groups for the reasons explained in Supplemental Material A.1. We find that 97.05% of the
prediction error in priority groups (based on a sample of 20,000 students) are from programs
that employ (as a device to determine priority groups) “attendance at information sessions.”
Because of this, we exclude these 238 programs (out of 743) programs.

In Table 8, Panel A discusses two counterfactual matchings without school choice: Ran-
dom matching and Neighborhood matching. Random matching randomly allocates the stu-
dents to the programs respecting the capacity constraints of the programs. Neighborhood
matching approximately minimizes the total distance traveled by the students to the pro-
grams subject to the capacity constraints.11

Other matchings (Panel B) in Table 8 reflect different versions of school choice. Matchings
in Panel B.a. represent the status-quo school choice. Actual matching is the actual school
choice matching in 2017 from the main round of DA. Estimated matching is the result from a
simulated DA using the estimated model of student behavior, coupled with the approximated

11Refer to Supplemental Material B.1 for approximation details.
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admission policies by the programs.12

The matchings in Panel B.b shut off different factors’ influences one by one. Change
to Truthful among Considered is the same as the Estimated matching except that students
truthfully report their considered programs in the order of their preferences until they run
out of the programs that are preferred to the outside option or reach the twelve-program
threshold. Note that the students may still drop programs they are unaware of or they feel out
of reach. Change to Full Consideration matching then further turns off limited consideration
by assuming that students consider every eligible program. Change to Random Screening
matching turns off the schools’ screening policies by forcing the programs endowed with
screening ability to randomly screen students. Change to No Admissions Priorities matching
then removes the admissions priority groups. Note that this matching purely reflects student
preferences without the influences of limited consideration, non-truthtelling behavior, nor the
schools’ admissions priorities and screening policies. In this regard, an alternative name for
the matching is Student-Preferences-Only Choice.

E Estimation: Details

E.1 Likelihood of Inclusion

Here we derive the formula of likelihoods of school inclusions and discuss why the true
parameters maximize the likelihoods. The likelihoods that we consider are not standard in
the sense that (1) they select students with sij := 1(|ri\{j}| < 11) = 1 and (2) the likelihoods
are weighted. We show that the true parameters maximize the likelihoods despite being non-
standard.

We first derive the formula of log-likelihood of inclusion of school j in the report of
applicant i. The log-likelihood reflects the identifying information in Observations 1 and
2. It selects individuals with sij = 1 (rather than those with |ri| < 12) to resolve selection
issues explained in Section 7.1; Lemma E.1 shows that, given (εvij, ε

c
ij)j∈J is i.i.d across j,

|ri\{j}| < 11 is independent of (εvij, ε
c
ij) conditional on observables (xj, zij), where xj is

the union of all variables in xvj and xcj (as defined in Section 6), and similarly for zij. Let
ιij := 1(j ∈ ri) denote the random variable indicating whether school j was included in
the report ri. Let wij := 1(vij > 0)1(cij > 0) and note that wij = ιij whenever sij = 1

following Observation 1. Let fw|z,s(·|z′, s′; θ) denote the density of wij given zij = z′, sij = s′,
and θ. Similarly define fι|z,s(·|z′, s′; θ) and fw|z(·|z′; θ). We treat (xj)j as nonrandom in this

12Refer to Appendix A for details on the estimation of the screening policies and the approximation of the
priority groups. See Supplemental Material B.2 for details on our implementation of Deferred Acceptance
algorithm.
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subsection. Then,

log ΠiΠj:sij=1fι|z,s(ιij|zij, sij = 1; θ) = log ΠiΠj:sij=1fw|z(wij|zij; θ)

=
∑
i

[ ∑
j:sij=1,j /∈Si

[(
1− wij

)
log
(
1− Φ(−ψvij)Φ(−ψcij)

)
+ wij log

(
Φ(−ψvij)Φ(−ψcij)

)]
+

∑
j:sij=1,j∈Si

[
(1− wij) log

(
Φ(−ψvij)

)
+ wij log

(
Φ(−ψvij)

)]]
(E.1)

where Φ̄(·) := 1−Φ(·), ψvij := vij − εvij, ψcij := cij − εcij, and θv and θc denotes the preference
and consideration parameters, respectively. For convenience, the dependence of ψvij on θv and
the dependence of ψcij on θc are made implicit. The second equality comes from sij = 1 being
independent of (εvij, ε

c
ij) and therefore also of (vij, cij) conditional on observables. The second

summation in the final expression, including only surely considered programs, is based solely
on the variation in Observation 2 and therefore depends only on preference parameters.
This part of the partial likelihood can also be used to estimate preference, whose results are
summarized in Figure A.3.

We now show that the population version of the log-likelihood is maximized by the true
parameters θ0. Define

Q(θ) := Eθ0
∑
j:sij=1

log fι|z,s(ιij|zij, sij = 1; θ) ≡ Eθ0
∑
j:sij=1

log fw|z(wij|zij; θ).

This is the population version of the log-likelihood (Equation E.1) in the sense that Q(θ) =

plimn→∞ n
−1 log ΠiΠj:sij=1fι|z,s(ιij|zij, sij = 1; θ) where n denotes the number of students in

the sample.
Now we show Q(θ0) ≥ Q(θ) for all θ. Note that

Q(θ)−Q(θ0) =
∑
j

Eθ0

[
sijEθ0

[
log

fw|z(wij|zij; θ)
fw|z(wij|zij; θ0)

∣∣∣sij, zij]]
≤
∑
j

Eθ0

[
sij logEθ0

[ fw|z(wij|zij; θ)
fw|z(wij|zij; θ0)

∣∣∣sij, zij]]
=
∑
j

Eθ0

[
sij logEθ0

[ fw|z(wij|zij; θ)
fw|z(wij|zij; θ0)

∣∣∣zij]] = 0

where the inequality holds by Jensen’s inequality, the penultimate inequality holds from
(cij, vij) |= sij|zij and therefore wij := 1(cij > 0)1(vij > 0) |= sij|zij, and the last equality
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holds from

Eθ0

[ fw|z(wij|zij; θ)
fw|z(wij|zij; θ0)

∣∣∣zij] =
fw|z(0|zij; θ)
fw|z(0|zij; θ0)

fw|z(0|zij; θ0) +
fw|z(1|zij; θ)
fw|z(1|zij; θ0)

fw|z(1|zij; θ0) = 1.

As the sample size of (i, j) pairs such that i surely considers j is small relatively those that
do not have the sure-consideration relationship, we put larger weights on sure-consideration
pairs. The weighted log-likelihood is

ωNSC

∑
i,j:sij=1,j /∈Si

[
(1− 1(j ∈ ri)) log

(
1− Φ(−ψvij)Φ(−ψcij)

)
+ 1(j ∈ ri) log

(
Φ(−ψvij)Φ(−ψcij)

)]

+ ωSC

∑
i,j:sij=1,j∈Si

[
(1− 1(j ∈ ri)) log

(
Φ(−ψvij)

)
+ 1(j ∈ ri) log

(
Φ(−ψvij)

)]

for some weights ωNSC and ωSC such that ωNSC
∑

j /∈Si sij + wSC
∑

j∈Si sij =
∑

j∈J sij. That
is, the schools that are not surely considered are weighted by ωNSC and those that are surely
considered are weighted by ωSC.

The true parameters maximize the population version of the weighted likelihood. To see
this, it suffices to show that the true preference parameters maximize the second term above
(as ωSC > ωNSC and the weighted likelihood can be expressed as the sum of unweighted
likelihood multiplied by ωNSC and the second term weighted by ωSC − ωNSC). But the
sure-consideration event j ∈ Si is determined by the observables and is independent of
(cij, vij) conditional on zij. Then, the Jensen’s inequality above holds with the sij replaced
as s̃ij := sij1(j ∈ Si).

E.2 Simulated Ordering Moments

In this subsection, we denote the union of variables in (xvj , x
c
j, z

v
ij, z

c
ij), as defined in the

empirical specification (Section 6), as simply zij. For any f : R → Rm,

0 = E
[
f(ri)− E[f(ri)|zi]

∣∣zi] = E
[
f(ri)− E[f(r(zi, ei; θ0))|zi]

∣∣zi]
where ei denotes the vector of unobservables (εvi , ε

c
i , ηi), θ denotes the parameter vector, θ0

denotes the true parameter vector, and r(zi, ei; θ) denotes the subjectively optimal report un-
der (zi, ei, θ) which is uniquely defined with probability 1. Section F describes the procedure
for simulating r(zi, ei; θ). It follows that

E

[(
f(ri)− E

[
f
(
r(zi, ei; θ0)

)∣∣zi])h(zi)

]
= E

[
E
[
f(ri)− E

[
f
(
r(zi, ei; θ0)

)∣∣zi]∣∣∣zi]h(zi)

]
= 0
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where h(zi) may be a m−dimensional vector.
The sample equivalent of this condition is

1

I

∑
i

(
f(ri)− Esim[f(r(zi, ei; θ0))∣∣zi])h(zi) = 0 (E.2)

where Esim
[
f
(
r(zi, ei; θ0)

)∣∣zi] = 1
S

∑
s f
(
r(zi, e

s
i ; θ0)

)
where the distribution of esi is com-

pletely governed by θ0 and not by zi due to independence.
The simulated ordering moments gives information about how individuals order the

schools:

E
[ 1

J

∑
j

(
1(j ∈ rki )− P

(
j ∈ rk(zi, ei; θ)

)
hj(zi)

]
= 0 ∀k = 1, . . . , 12

where rki is represents the report ri truncated up to the kth slot, rk(·) is the equivalent for
the simulated report, and the set inclusion notation is used towards rki and rk(·) with a slight
abuse. The condition uses f(ri) = 1

J

(
1(j ∈ rki )

)
j∈J in the notation of Equation E.2. The

moment condition is implemented by

1

IJ

∑
i

∑
j

(
1(j ∈ rki )− Esim[1(j ∈ rk(zi, ei; θ))∣∣zi])hj(zi)

with S = 1. Using one simulation draw per observation is justified as the simulator
Esim

[
1
(
j ∈ rk(zi, ei; θ)

)∣∣zi] is unbiased for E[1(j ∈ rki )] and therefore rely on the law of
large numbers with respect to the observations to control for simulation error (McFadden,
1989). And we use h(zi) =

(
1, zij, (zij − z̄i)2, cutoffij −Eobj[scoreij]

)
j∈J where we remind the

readers that we are using a shorthand expression: zij includes all variables in (xvj , x
c
j, z

v
ij, z

c
ij).

Potentially because of non-smoothness of the criterion function with respect to the pa-
rameters due to simulations, in the second stage of estimation—where we use these order-
ing moments to recover the belief parameters—the traditional gradient-based algorithms or
Knelder-Mead algorithms did not work well to find the minimizer. We instead relied on grid
search on the two-dimensional grid (per each ethnicity) to find the minimizer.

E.3 Lemmas

Lemma E.1. Suppose (εvij, ε
c
ij) is independent across j. Then, the event |ri \ {j}| < 11 is

independent of (εcij, ε
v
ij) conditional on observables.

Proof. Fix the observables (x, z). Note that it suffices to show that |ri \ {j}| < 11 is the
same as the event

∑
j′ 6=j 1{cij′ > 0, vij′ > 0} < 11; being determined by only (εcij′ , ε

v
ij′)j′ 6=j ,

the latter is independent of (εcij, ε
v
ij) as desired. Note that |ri \ {j}| < 11 holds if and only
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if both
∑

j′ 6=j 1{cij′ > 0, vij′ > 0} < 11 and |ri| < 12 holds due to the first statement
of Observation 1. This is then equivalent to iff

∑
j′ 6=j 1{cij′ > 0, vij′ > 0} < 11 due to the

second statement of Observation 1.

F Simulating Subjectively Optimal Reports
Here we describe the procedure for calculating the subjectively optimal reports:

r(zi, ei, θ) = arg max
r∈R(Ci)

J∑
j=0

prijvij (F.1)

where the distribution of (Ci, vij, prij)ij depends on θ. We ignore ties in optimal reports as they
occur with probability zero. Note that arg maxr∈R(Ci)

∑J
j=0 p

r
ijvij = arg maxr∈R(J+

i )

∑J
j=0 p

r
ijvij

where J +
i = {j ∈ Ci|vij > 0} is the set of schools that are considered by i and are preferred

to the outside option. The equality holds since students will never wish to list any school
outside J +

i .
The optimization problem is difficult to solve since the size of a choice set, even after being

reduced to R(J +
i ), can be large. For instance, with |J +

i | = 20, the choice set R(J +
i ) is all

possible ordered lists using the schools in J +
i which has as many as 20!/(20−12)! ' 6.03∗1013

elements. As in Calsamiglia, Fu, and Güell (2020), to make this problem solvable through
backward induction, we represent this problem as what resembles a finite-horizon dynamic
programming problem.

Let jk represent the school listed in the kth spot. Note prij = Πk−1
l=1 (1 − qijrl l)qijk. Let

K = min{12, |J +
i |}, which represents the last slot (or period) that the student optimally

fills in. Each student solves the following problem:

arg max
r∈R(J+

i )

J∑
j=0

prijvij

= max
{j1,··· ,jK}⊂J+

i

qij11vij1 + (1− qij11)
(
qij22vij2 + · · ·+ (1− qij22) · · · (1− qij1111)qijKvijK

)
.

We solve the problem backwards from the last school the student puts in the list. Let
Jk = {j1, · · · , jk}. Let V i

K({j1, · · · , jK−1}) = maxj∈J+
i \JK−1

qijKvij and, for 1 ≤ k < K,
let V i

k ({j1, · · · , jk−1}) = maxj∈J+
i \Jk−1

qijkvij + (1− qijk)V i
k+1({j1, · · · , jk−1, j}). Then, V i

1 =

maxj∈J+
i
qij1vij + (1− qij1)V i

2 ({j}) = maxr∈R(J+
i )

∑J
j=0 p

r
ijvij, which shows that the original

problem may be solved via the dynamic formulation.
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A Data Appendix

A.1 Eligibility and Priority Groups

Eligibility and priority groups for a program are recorded only for the students who have
written down the program in their reports. For consistency, we use the constructed eligibili-
ties and priorities even for those student-school pairs whose actual eligibilities and priorities
are observed. While the high school directory offers explicit explanations of criteria for eli-
gibility and priority groups, there are instances where determining if a student meets these
criteria based on available data is not feasible. In such cases, approximations are made.

There are several priority and eligibility criteria that we ignore and assume that every
applicant satisfies them. These criteria are whether a student attended an information
session, whether a student lived in the US for a certain period of time, or whether a student
knows or is interested in learning American Sign Language.

There are also criteria that we seek to approximate. Some criteria assess whether a
student attended specific middle school programs, which is not observed in the data; on
the other hand, we observe the middle school (which may contain multiple programs) that
each student attends. In these cases, we code the student as satisfying the criteria if the
student attends the middle school that contains the program. Such criteria involves either
Dual Language Spanish middle school programs or Transitional Bilingual Education Spanish
middle school programs.

Some criteria concern granting eligibility or priority to students living in “geographical
catchment areas.” We approximate these catchment areas based on the addresses (specifi-
cally, addresses grouped into school zones) of the students who have applied to these programs
and were determined by NYC to be eligible (or ineligible). We apply a similar approach for
criteria involving “Brooklyn Area A” and “Brooklyn Area B”.

There are also criteria that pertain to students’ proficiency in English. While some of
these criteria, such as requiring the students to be English Language Learners, are both
well-defined and is clearly determinable from the dataset, there are other proficiency criteria
that are not directly determinable from data. We use the English Language Learner status
to approximate the satisfaction of such criteria.
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A.2 Scores and Cutoffs

As in the main text, we model student i’s belief regarding program1 j written at the k-th slot
of his report as qijk = Pi

(
cutoffj−Eobj[scoreij]+εbijk > 0

)
where Pi is the probability measure

of εbijk. The belief consists of two parts, namely the objective difference cutoffj−Eobj[scoreij]
and the subjective assessment εbijk. In this section we explain the empirical specification of
the objective difference, starting with cutoffj.

We call a priority group the threshold priority group if the subsequent priority groups
have no accepted students. We say student i is contemplated by program j if i is not assigned
to a program listed strictly above j in his report ri. With these two definitions, we set cutoffj
as the summation of the threshold priority group number and the proportion of accepted
students among those who are contemplated by j, within the threshold priority group.2

Now we turn to Eobj[scoreij]. First, because admissions priority groups are lexicograph-
ically more important than the screening outcomes and lotteries (both of which we call
tiebreakers), we model scoreij = priorityGroupij + quantileij where priorityGroupij ∈ {1, . . . , 6}
is the admissions priority groups and quantileij ∈ [0, 1] is the quantile of the tiebreaker among
the applicants who were contemplated by program j. The second term quantileij is inherently
unobservable (e.g., due to a tiebreaking lottery) from the student’s perspective, so he forms
an expectation to build his belief. Therefore we specify the (objectively) expected score
Eobj[scoreij] as

Eobj[scoreij] = priorityGroupij + Eobj[quantileij].

We detail the construction of Eobj[quantileij] momentarily. The uncertainty from the dis-
crepancy between the true score and the objective expectation thereof is subsumed into
νij.

We do not observe priorityGroupij for all (i, j) pairs, and hence we impute their values.
As explained in Supplemental Material A.1, priorityGroupij is not observed directly from the
dataset if i does not apply to j. We construct priorityGroupij based on the priority criteria
stated in the school directory which is publicly available. For example, if j states that the
program assigns priority group 1 to any students living in Manhattan, and i indeed lives in
Manhattan, then we let priorityGroupij = 1.

Neither is Eobj[quantileij] observed for every (i, j) pairs. In this regard, programs can be
divided into three categories based on their tie-breaking methods: lottery-based programs,

1The subscript j denotes pairs of disability type and program, but here we simply call them programs
for the sake of simplicity.

2By this definition, the cutoff is set as (the last priority group +1) if a program is matched to fewer
students than its capacity.
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screen-based programs, and Educational Option programs. For lottery-based programs,3

the tiebreaker is a single lottery, which we do not observe. For these programs, we assign
Eobj[quantileij] = 0.5, the mean of the within-priority group quantile generated by a lottery.
For screen-based programs,4 the tiebreaker is the screening priority and we observe how
programs ranked a subset of the applicants by their screening policies.5 Educational Option
programs use both the lottery and screening priority which we detail later.

In order to evaluate Eobj[quantileij] for each possible (i, j) pair when j is a screen-based
or an Educational Option program, an ideal data would be one in which we observe how a
program ranks all the students. However, this is not the case for our data in two senses.
First, if a student is not contemplated by a program, the program does not rank the student.
Second, even if they are contemplated by the program, they still may not be ranked.

To address this, we predict the counterfactual screening priority ranking as follows. We
first run the following OLS regression using (i, j) pairs for which i is ranked by j:

rawRankij = βjXi + δj,priorityGroupij + εij

where rawRankij is the ranking of i evaluated by j in the data, and δj,priorityGroupij are program
and priority group fixed effects. The covariates Xi include English and math test scores, the
number of days i has been absent, and the number of days i has been late.

We then use the estimate β̂j to predict the quantile of i within her priority group among
those who were contemplated, according to the data, by j. Specifically,

Eobj[quantileij] =
1

|Cij|
∑
i′∈Cij

1(β̂jXi′ ≤ β̂jXi)

where Cij = {i′ : priorityGroupi′j = priorityGroupij, i′ is contemplated by j according to the data}.
Educational Option programs, according to the NYC high school directory, “admit stu-

dents who have high, middle, and low reading levels. Half of the students in each reading
level group will be selected based on their rankings from the school using multiple criteria.
The other half will be selected randomly from the remaining applicants.” Following Che and
Tercieux (2019), we create six “virtual subprograms” for each Educational Option program,
namely HR, HS, MR, MS, LR, and LS, where H, M, and L indicate high, middle, and low
reading levels respectively, while R and S indicate random and select.

3Lottery-based programs are those with admission methods: Unscreened, Limited Unscreened, Zoned
Priority, Zoned Guarantee, and For Continuing 8th Graders programs.

4Screen-based programs are those with admission the following admission methods: Audition, Screened,
Screened: Language, and Screened: Language & Academics.

5We observe some violations in the data. 0.35% of screen-based programs do not assign any tiebreakers
to their applicants, and among those that do, 5.32% assign the same tiebreaking number if any.
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We let subprograms HR and HS share the same cutoff level cutoffj(H), which is computed
as above but conditional on the reading level being high; i.e., cutoffj(H) is the summation of
the threshold priority group (which is the priority group whose subsequent priority groups
have no accepted students with high reading level) and the proportion of accepted students
among those who are contemplated by j and have high reading level, within the threshold
priority group.

We let Eobj[quantileij(HR)] = 0.5 as above (since HR is a random subprogram). We
calculate Eobj[quantileij(HS)] in a similar manner to screen-based programs. This is less
straightforward, however, because we do not observe which students are “contemplated” by
HS (even though we do observe the students who are contemplated by j as a whole). For
this, we run deferred-acceptance algorithm to simulate which students are contemplated at
the subprogram level. This requires students to rank the virtual subprograms, for which
we again follow Che and Tercieux (2019); a student who applies to an Educational Option
program j is assumed to rank the subprograms according to the order HR, HS, MR, MS, LR,
and LS. The simulation matches 73.4% of the students who were matched to an Educational
Option program (in the data) to the same program. For subprogram matching, we use these
correct matches only. Other subprograms, MR, MS, LR, and LS, are treated analogously.

In the end, as we need i’s belief on the Educational Option program rather than on
its subprograms, we use the maximum6 of the objective differences of the subprograms to
approximate the belief on the program, i.e.,

qijk = Pi
(

max
s∈S

[cutoffj − Eobj[scoreij(s)]] + εbijk > 0
)

where S = {HR,HS, . . . , LS} is the set of subprograms of j.
In the equation determining cij, a proxy for objective chance of admission enters the

equation: the difference in objective expected scores and cutoffs. They correspond to cutoffj−
Eobj[scoreij].

A.3 Distances

To calculate distance measures, we rely on the centroid of the student’s census block and the
precise locations of the schools. For this computation, we employ the Haversine formula, a
method used in navigation providing great-circle distances between two points on a sphere
from their longitudes and latitudes. Distances are expressed in miles.

6We take maximum, instead of, say, average, to reflect that a student is accepted by an Educational
Option program if the student is accepted by any of its subprograms.
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A.4 Program Admission Methods and Interest Area

The following admission methods, as defined by NYC DOE, use lottery to break the ties:
“Unscreened", “Limited Unscreened", “Zoned Priority", “Zoned Guarantee", and “For Con-
tinuing 8th Graders". The following admission methods use screening policies to break the
ties: “Audition”, “Screened”, “Screened: Language”, and “Screened: Language & Academics”.
“Educational Option” programs use both screening and lotteries to break the ties. Such pro-
grams were counted towards the calculation of proportion of programs that uses screening
in Table 2.

In terms of programs’ interest areas, Table 2 and in our estimation of the model of
application behavior (Table 6) defines some programs to be of Arts programs or STEM
programs. Arts programs are the programs that have one of “Performing Arts”, “Visual Art &
Design”, and “Performing Arts/Visual Art & Design” as their interest area as defined by NYC
DOE. Similarly, STEM programs are those that have “Computer Science & Technology”,
“Engineering”, and “Science & Math” as their interest area.

A.5 Missing School Characteristics

The dataset had some instances of missing values for the following school characteristics:
graduation rate, college/career rate, and percentage of students feeling safe. To perform our
counterfactual analysis, we needed to predict students’ utilities, consideration probabilities,
and beliefs for every program. Therefore, we took the approach of imputing the missing
values. We used the predicted values from the ordinary least squares regressions of each
of these variables on the following characteristics: attendance rate, average grade 8 math
proficiency, percentage of students eligible for Human Resources Administration, enrollment
size, and the percentage of White, Black, and Asian students. These regressions utilized
only the non-missing observations.

B Simulations of matchings

B.1 Simulation of Neighborhood Matching

Finding the optimal matching that minimizes the sum of distance-to-school is an integer lin-
ear programming problem, and its computation time increases nonlinearly with the number
of students. To reduce the computation time, we adopt an iterative approach to approximate
the total distance minimization. In the initial step, we randomly select 10,000 students and
match them to programs to minimize the sum of distance traveled, with program capacities
adjusted proportionally. We then iterate this procedure, considering the remaining students
and program seats, until all students are matched.
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B.2 Simulation of Deferred Acceptance Algorithm

Capacities The simulation exercises require program capacities (for each disability type)
as one of their inputs, which we take from 2018 High School Directory because it states the
capacities for the year 2017. For zoned programs and feeder-only programs, however, the
directory does not state the capacities. In these cases, we use the number of students who
are in the corresponding school zones and who are from the corresponding feeder schools,
respectively. For programs that appear in 2017 High School Directory but not in 2018, we
use the capacities as stated in 2017 High School Directory.

In the data, students are often matched beyond the stated capacities; for example, 51.34%
of the programs admitted more students (13.86 students on average) in round 1 than their
capacity as stated in 2018 High School Directory. Therefore we take the number of actually
matched students as the program capacity if it is greater than what we have obtained in the
previous paragraph.

We have complete non-missing data only for the students who are attending NYC public
schools and therefore have used only such students for estimation. In the simulation of DA,
we also use only these students, which are 92.2% of the total students. To account for this, we
reduce the capacities of programs proportionately to be 92.2% of their estimated capacities.

Finally, for Educational Option programs, the capacity is divided into six virtual subpro-
grams: 50%× 16% of the total capacity goes to each of HR, HS, LR, and LS subprograms,
and 50%× 68% goes to each of MR and MS subprograms.

Preferences of Students and Rankings by Programs Other inputs of simulation in-
clude preferences of students and programs. The preferences of students are formed as
described in Section 4, given parameter values and policies such as information interven-
tions. A slight complication involves Educational Option programs; for those, we follow Che
and Tercieux (2019) and let a student, whenever she includes an Education Option program
in her report, rank its subprograms in the order of HR, HS, MR, MS, LR, and LS.

For simulation, we need each program to rank all the counterfactual applicants for the
program, which does not necessarily coincide with the set of its actual applicants in our
data. Because of this, we let the programs rank the students according to the objective
expected score Eobj[scoreij], defined in Section 6, instead of the actual ranking reported by
the program in the data; the former is defined for each pair of student i and program j,
whereas the latter is available only when i is an actual applicant for j in the data. In case
of lottery-based programs or ties in the objective expected scores, we use individual-specific
lottery number to break ties.
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