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Abstract

Informational frictions in centralized school choice can significantly influence its dis-
tributional consequences. Recognition of such frictions is also necessary to accurately
measure welfare. We build a model of school applications, allowing applicants to con-
sider only a limited set of schools and to have mistaken beliefs about their admission
chances. Quasi-experimental variation and rich information in students’ rank-ordered
lists enable identification. Utilizing this model, we evaluate the impacts of centralized
school choice in New York City on racial segregation and equity in welfare, decom-
posing the contributions of the frictions and the preferences of students and schools.
We also quantify matching stability and deviations from truthful reporting. Our re-
sults show that while school choice improves welfare across races, limited consideration
substantially compromises these gains, particularly for Black and Hispanic students.
A counterfactual policy involving personalized school recommendations designed using
our model is projected to recover 20–36% of the welfare losses.
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1 Introduction

School choice policies aim to alleviate the effects of residential locations on educational oppor-
tunities by enabling broader access to schools. A notable approach to school choice involves
the use of centralized assignment mechanisms. These mechanisms are often motivated by
theoretical results that guarantee stability, efficiency, or strategy-proofness.1 However, their
real-world impacts remain contested. The theoretical results depend on the assumptions that
the applicants make well-informed and rational choices,2 and that the implemented mecha-
nisms adhere to the theoretical ideal.3 Moreover, policymakers often prioritize distributional
goals such as racial integration and equity,4 which are aspects not directly addressed by
the theoretical results. Furthermore, frictions in information or rationality, which may vary
across demographic groups, can exacerbate the distributional outcomes. Therefore, the im-
pact of centralized school choice on various outcomes is an empirical question, necessitating
careful consideration of these frictions.

In this paper, we examine the effects of centralized high school choice in New York City
(NYC), utilizing a school application model that emphasizes two key optimization frictions:
applicants may consider only a subset of the 763 school programs and may have incorrect
beliefs about their assignment chances. Quasi-experimental variation, such as the positioning
of schools in the school directory, along with rich information embedded in students’ rank-
ordered lists of schools, enables the identification of the model using observational data. The
ideas behind identification are formalized with results on nonparametric identification. Using
the estimated model, we analyze the impact of school choice on integration and equity of
welfare across different demographic groups. We further measure the contributions of several
factors, including students’ preferences, limited consideration sets, deviations from truthful
reporting, as well as schools’ admissions priorities and screening policies. After discovering
that informational frictions substantially suppress student welfare, and especially so for Black
and Hispanic students, we investigate the design of counterfactual interventions that make
personalized school recommendations based on the estimated preferences and consideration
probabilities. Additionally, we examine the stability of the matching and the truthfulness of
the rank-orderings, the two main theoretical targets of NYC’s assignment mechanism.

NYC’s high school assignment procedure allocates students to schools through a version
of the Deferred Acceptance (DA) mechanism, motivated by theoretical results that pre-
dict matching stability and strategy-proofness under idealized assumptions of informed and
rational behavior. However, these theoretical results do not directly target important dis-

1See, e.g., Gale and Shapley (1962), Shapley and Scarf (1974), Ergin (2002), and Abdulkadiroğlu and
Sönmez (2003). Such centralized mechanisms are used in, for example, New York City, Chicago, Boston,
New Orleans, Paris, Spain, and Romania (Abdulkadiroğlu et al., 2020; Fack et al., 2019).

2See, e.g., Hassidim et al. (2017), Li (2017), and Fack et al. (2019).
3See, e.g., Abdulkadiroğlu et al. (2005), Haeringer and Klijn (2009), and Calsamiglia et al. (2010).
4See, e.g., NYC DOE (2020).
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tributional outcomes such as racial diversity and equity. Furthermore, the presence of more
than 700 school programs in NYC suggests potentially large informational frictions. NYC’s
implementation of DA also deviates from the canonical version; students can list at most
twelve school programs, and there is an aftermarket. Consequently, there may be instances
where a student’s optimal strategy does not coincide with truthful reporting. In such situa-
tions, students must assess their admission chances, which requires a correct understanding
of the nuances of NYC’s specific DA algorithm. Disparities in information about NYC’s
school programs5 or in grasping the intricacies of the algorithm6 can have distributional
consequences. Informational frictions and the divergence from truthful reporting can also
compromise matching stability.

Our paper begins by presenting descriptive evidence suggesting frictions in optimization
and the presence of racial disparities. Our findings indicate that applicants take admission
chances into account even under situations where such behavior is weakly dominated. We
further document that students are significantly less likely to apply to the schools appear-
ing on the later pages of NYC’s school directory—even though schools are alphabetically
ordered—suggesting substantial informational frictions. Such patterns are more pronounced
for Black and Hispanic students, whose neighborhood schools tend to be lower-performing
and less selective.

To accommodate these observations, our model of students’ application behavior incor-
porates elements of optimization friction. Such a model is particularly important in our
context. A model without such frictions would force the researcher to interpret any observed
behavior under school choice as optimal, potentially biasing the results in favor of school
choice. Furthermore, a frictionless model attributes differences in the choice patterns across
demographic groups to differences in preferences when, in fact, they may be caused by dif-
ferences in frictions. In contrast, a model encompassing frictions enables us to disentangle
the contributions of preferences and frictions and to provide guidance on possible policy
interventions.

Specifically, our model allows each applicant to consider only a limited set of the school
options7 and have incorrect beliefs about equilibrium admission chances. An applicant may
fail to consider a school because she is unaware of the school or feels she can never be
admitted. Even if she does consider a school, she may have incorrect beliefs about how her
rank-ordering of schools can affect her assignment probabilities.

Rich information in students’ rank-ordered lists, combined with exogenous variation in
consideration, enables the identification of the model using observational data. As an ex-

5See, e.g., Sattin-Bajaj (2016) and Corcoran et al. (2018).
6See, e.g., Pathak and Sönmez (2008), Sattin-Bajaj (2016), Basteck and Mantovani (2018), and Rees-

Jones (2018).
7To be precise, some schools host multiple programs, and these programs are the primary units of analysis

for most of our results. We will distinguish between schools and their programs when such distinction becomes
necessary.

2



ample, while a lack of consideration may affect which schools are listed, it cannot affect
where a listed school will be ranked. Concerning the exogenous variation, we argue that
certain observables, such as the positioning of schools in the NYC directory, can affect the
consideration set but not preferences.8 Another assumption that assists identification is that
some students have a set of schools (e.g., noncompetitive schools close to home) that they
will surely consider. We formalize our intuitive identification strategy by establishing suffi-
cient conditions for nonparametric identification using the type of rank-ordered choice data
typically available from centralized school choice systems, with an appropriate instrument.
These conditions clarify the sources of identification and the limited role played by functional
form assumptions.

The estimates reveal racial differences in consideration and preference patterns. Black
and Hispanic students are more likely to consider less selective schools and prefer them
to their outside options. Asian and White students’ consideration sets are better aligned
with their preferences. Across all races, students’ reporting strategies are estimated to be
approximately consistent with truthful reporting among the considered programs.

Using our estimated model, we quantify racial integration and equity in school assign-
ments. The results indicate that school choice slightly promotes racial integration, mainly
by reducing the isolation index of Black students by approximately 7.7 percentage points.
Furthermore, school choice also significantly improves welfare across all racial groups; the
proportion of students matched to one of their top five preferred school programs increases
from about 3% under neighborhood matching to around 28% under school choice matching.
The improvement is larger for Black and Hispanic students. However, limited consideration
substantially suppresses the welfare gains. If students considered all schools, students would
be about twice as likely to be matched to one of their top five preferred school programs, with
the greatest potential gains for Black and Hispanic students. Schools’ admissions priorities
and screening policies segregate races and tend to place Asian and White students in their
preferred schools.

Recognizing the significant welfare losses resulting from limited consideration, we propose
using our model to design targeted information interventions.9 These interventions utilize
the estimated preferences and consideration sets to recommend 30 programs to each student.
Some of these interventions show significant promise, with the most effective one estimated
to address between 20–36% of the welfare losses.

We also measure matching stability by quantifying the prevalence of justified envy, a
situation where a student and a school program prefer each other over their current matches.

8Relatedly, Martin and Yurukoglu (2017) use local channel positions as exogenous variation that shifts
channel viewership but are uncorrelated with the local political inclinations. A number of previous research
considered the effects of positioning of items in online settings; see, e.g., Feng et al. (2007), Koulayev (2014),
Ursu (2018).

9Allende et al. (2019) also use the estimated model to study alternative designs of their information
intervention.
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On average, our estimates indicate that students view only around three school programs
with justified envy, a relatively small number compared to around 750 available programs.

Relation to the Literature Our paper provides the following contributions to the liter-
ature. First, we estimate a model of school applications that allows the applicants to have
limited awareness about school options in addition to potentially incorrect beliefs about ad-
mission chances. We also provide an identification strategy based on observational choice
data. To the best of our knowledge, aside from our own, only the work by Ajayi and Sidibe
(2022) estimates a school applications model that allows for limited consideration due to a
lack of awareness. They also allow for incorrect beliefs about admission chances. In their
main model, applicants engage in a sequential search process to expand their consideration
sets. While we do not model the sequential aspect of search, we allow the consideration
probabilities to be correlated with utilities through a rich set of observables.10 We also com-
plement their work by providing nonparametric identification results. These results relate
to those of Agarwal and Somaini (2022), who examine the identification of preferences and
latent choice sets. They consider the case of single-unit demand with the presence of two
types of instruments, one that affects preferences but not the choice sets and the other that
affects choice sets but not preferences. In contrast, in our empirical setting, while only the
latter kind of instruments are present,11 students can list and rank-order multiple schools,
which provide additional identifying variation. Our model also distinguishes between con-
sideration and nondegenerate beliefs given consideration. Our identification strategy also
builds upon Agarwal and Somaini (2018), who provide sufficient conditions for nonparamet-
ric identification of preferences while assuming full consideration and holding fixed a mode
of beliefs in a centralized school choice setting.12 Allende et al. (2019) estimate a school
choice model where students have imperfect information about the school attributes. Our
paper also relates to the broader literature on the estimation and identification of discrete
choice models with limited consideration.13

Other studies have documented the importance of limited information about the school
options. Using surveys and informational interventions, Arteaga et al. (2022) show that
the search frictions are significant in their school choice setting and that search behavior is
affected by their (updated) beliefs about admission chances. Corcoran et al. (2018) provide
evidence that information intervention affects application behavior in the NYC high school

10In Ajayi and Sidibe (2022)’s model, conditional on deciding to continue searching, the probability of
discovering a school is determined by schools’ number of seats and, in their directed search model, also by
the perceived admission chances.

11As a supplementary nonparametric identification result, we discuss the case where both types of instru-
ments are present (Proposition D.1) unlike the empirical setting.

12The approaches used in nonparametric identification results are further related to, for example, Thomp-
son (1989), Bresnahan and Reiss (1991), Lewbel (2000), Berry et al. (2013), and Berry and Haile (2020).

13See, e.g., Goeree (2008), Conlon and Mortimer (2013), Gaynor et al. (2016), Hortaçsu et al. (2017),
Abaluck and Adams-Prassl (2021), Barseghyan et al. (2021a), and Barseghyan et al. (2021b).
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application procedure. Narita (2016) shows that students in NYC modify their orderings of
schools during the re-application process; many applicants self-report that these changes arise
from evolving preferences or updated information. Informational frictions are also important
in other environments of school or college applications (e.g., Hastings and Weinstein, 2008;
Hoxby and Turner, 2013; Ajayi et al., 2017; Dynarski et al., 2021). We find that limited
consideration significantly suppresses the welfare of students and discuss how we may use
the estimated model to construct effective school recommendation policies.

Our second contribution is to disentangle the role that limited consideration plays in
racial segregation and inequality in school assignments from the role played by students’
preferences. Relatedly, Ajayi and Sidibe (2022) estimate the welfare loss due to information
frictions in a centralized school choice system in Ghana and that the loss is concentrated on
low-ability students. Other studies have empirically examined the contributions of various
factors to equity or segregation under centralized school choice procedures (Kessel and Olme,
2018; Laverde, 2020; Oosterbeek et al., 2021; Akbarpour et al., 2022; Hahm and Park, 2022;
Sartain and Barrow, 2022; Idoux, 2023; Park and Hahm, 2023). Calsamiglia et al. (2021)
theoretically examine the impact of matching algorithms on segregation. There have been
studies that examine the distributional impacts of school choice in other contexts (e.g., Epple
and Romano, 1998; Hsieh and Urquiola, 2006; Bifulco and Ladd, 2007; Neilson, 2013; Altonji
et al., 2015; Hom, 2018; Avery and Pathak, 2021).

We further contribute to a growing literature that allows for subjective beliefs about
admission chances in school choice settings. We additionally allow for imperfect awareness
of school options. Kapor et al. (2020) estimate a model that allows for subjective beliefs
using survey data on perceived admission chances and data on rank-ordered lists. Our
model of beliefs is based on theirs, and we complement their work by providing results on
identification that use data on observed choices and instruments rather than survey data.
Relatedly, Luflade (2018) and Calsamiglia et al. (2020) estimate preferences and potentially
incorrect beliefs with observed choice data without surveys.14 Some studies propose strategies
for estimating preferences while allowing for mistaken beliefs under nontruthful mechanism
(He, 2017; Hwang, 2017; Agarwal and Somaini, 2018) and while allowing for nontruthful
behavior under (approximately) truthful mechanisms (Artemov et al., 2017; Fack et al.,
2019; Che et al., 2020; Larroucau and Rios, 2020; Idoux, 2023).15 Our findings indicate that,
while students may drop schools from their submitted reports because of admission chances
that are perceived to be negligible (even when the list length constraint is not binding), they
rarely place a lower-utility school above a higher-utility school. These findings are consistent
with the literature that finds or assumes that nontruthful ordering is less common than

14More broadly, Aguirregabiria (2021) studies the identification of firms’ preferences and beliefs about
the competitors’ behavior using data on observed actions.

15Abdulkadiroğlu et al. (2017) and Che and Tercieux (2019) assume weak versions of the truthtelling
assumption.
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dropping an unlikely school (Fack et al., 2019; Fabre et al., 2021; Shorrer and Sóvágó, 2022).
We also measure matching stability and the influences of various factors on student

welfare. Luflade (2018) analyzes the value of information about admission chances on welfare.
This paper measures the effect of limited consideration sets and the deviations from truthful
reporting on welfare.16 Other studies have investigated student welfare or matching stability
(Narita, 2016; Abdulkadiroğlu et al., 2017; He, 2017; Hwang, 2017; Agarwal and Somaini,
2018; Luflade, 2018; Che and Tercieux, 2019; Abdulkadiroğlu et al., 2020; Kapor et al.,
2020; Calsamiglia et al., 2020). Our paper ensures that frictions in awareness and in the
assessments of admission chances are not conflated with utilities. Thus, our evaluation of
welfare and stability reflects preferences net of the influences from the frictions.

2 Overview of New York City’s High School Choice

2.1 The Context

The NYC public high school choice system matches approximately 80,000 students to more
than 700 public high school programs annually. The system uses the following centralized
procedure:17

(1) Each applicant submits her rankings over the school programs. She can rank up to 12
school programs.

(2) Each school program ranks applicants using the admissions priority groups, screening
policies, and/or lotteries.

(3) NYC runs the student-proposing DA algorithm to assign students to school programs
using the rankings of the students and the school programs.

The matching procedure in NYC creates incentives for the applicants to deviate from truth-
fully reporting their preferences, due to the list length constraint and the presence of the
aftermarket. This is discussed in Section 2.2.

Characteristics of the student sample are summarized in Table 1.18 The district has
many minority students and low-income students. Of the students in the sample, 40.5%
of the students are Hispanic, 26.9% are Black, 16.1% are Asian, and 15.0% are White.19

71.3% of the students are eligible for free or reduced-price lunch. The table also (partially)
demonstrates the housing racial segregation in NYC.

16As discussed above, Ajayi and Sidibe (2022) measures the welfare loss due to limited search.
17We focus on the applications towards traditional public high schools, excluding specialized high schools

or charter schools. Approximately 70% of NYC high school students attend traditional public high schools.
See Appendix C for details.

18For discussions of the data and the sample, refer to Section 3.1.
19We use race and ethnicity interchangeably in this paper.
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Table 1: Characteristics of Students by Ethnicity

Asian Black Hispanic White Totala

Proportion in the sample 16.1% 26.9% 40.5% 15.0% 98.4%

Female 47.8% 48.8% 48.4% 48.2% 48.4%
English Language Learner 13.5% 2.7% 18.2% 6.4% 11.3%
Subsidized lunch 69.5% 76.4% 80.5% 40.2% 71.3%
Students with disabilities 7.4% 25.0% 24.8% 17.3% 20.8%
Neighborhood incomeb($) 58553.0 49469.1 47624.1 73686.9 54119.7
Mean distance to schools 9.12 8.99 8.47 10.92 9.09

Home boroughs
Bronx 6.4% 25.9% 36.2% 6.0% 23.7%
Brooklyn 29.2% 42.5% 20.3% 33.5% 29.8%
Manhattan 7.5% 8.8% 12.7% 12.8% 10.9%
Queens 52.9% 19.4% 26.5% 25.5% 29.0%
Staten Island 4.0% 3.4% 4.2% 22.1% 6.7%

State Reading Categoryc

High 42.7% 16.7% 16.3% 43.7% 25.1%
Middle 50.6% 68.4% 67.0% 50.4% 62.0%
Low 6.7% 14.9% 16.7% 5.8% 12.8%

Report length 7.2 7.5 7.2 5.6 7.1

Notes: Except for the proportion in the sample, all the percentage terms
represent the proportions of the relevant categories within each ethnicity.

a 1.6% of students are multi-racial or Native American.
b Based on the ZIP code of the student’s home address. Median household
income is from U.S. Census Bureau, 2013–2017 American Community Survey
five-year estimates, in 2017 dollars.

c Based mostly on NY State English Language Arts test submitted from a
student’s 7th grade school year. See Appendix E.5 for details.

The school and program characteristics are summarized in Table 2 by borough. Schools
vary widely in their characteristics, both within and across boroughs. For example, across
boroughs, while the average proportion of Hispanic students is 65% in the Bronx schools, it
is only 28% in Staten Island. There is also wide within-borough variability. For instance, the
standard deviation of the proportion of Hispanic students is as large as 22 percentage points
within Brooklyn. While there are only nine schools in Staten Island, there are roughly 100
schools in each of the other four boroughs.

A school may have multiple programs within it, and each program has its own admission
policy and interest area. How the programs rank their applicants may be based on admissions
priority groups, screening policies, and lotteries. Priorities groups are lexicographically more
important than the rankings based on screening or lotteries.20 To break ties within a group,
37.2% of the programs use screening. It can be based on various criteria, including grades,

20The high school directory writes that “All students in the first priority group will be considered first. If
seats are available, students in the second priority group will be considered next, and so on”. However, we
observe that 4.34% of students experience deviations from this stated lexicographic rule.
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Table 2: Characteristics of Schools and Programs by Borough

Bronx Brooklyn Manhattan Queens Staten Island Total

Schools

Graduation rate 0.68 (0.15) 0.74 (0.14) 0.79 (0.16) 0.79 (0.16) 0.78 (0.10) 0.75 (0.15)
College/career rate 0.49 (0.15) 0.51 (0.17) 0.61 (0.19) 0.64 (0.19) 0.65 (0.15) 0.56 (0.18)
Average grade 8 math (std.) -0.50 (0.58) -0.19 (0.81) 0.35 (1.17) 0.50 (1.11) 0.55 (0.64) 0.00 (1.00)
Proportion White 0.03 (0.03) 0.07 (0.12) 0.10 (0.15) 0.11 (0.11) 0.43 (0.21) 0.08 (0.13)
Proportion Black 0.27 (0.12) 0.55 (0.28) 0.26 (0.15) 0.28 (0.26) 0.17 (0.12) 0.35 (0.24)
Proportion Asian 0.03 (0.03) 0.07 (0.10) 0.09 (0.12) 0.22 (0.15) 0.08 (0.03) 0.09 (0.12)
Proportion Hispanic 0.65 (0.13) 0.29 (0.22) 0.52 (0.21) 0.35 (0.21) 0.28 (0.12) 0.45 (0.24)
9th grade school seats 115.51 (71.19) 157.98 (145.20) 133.98 (84.56) 187.08 (141.38) 304.33 (217.18) 149.25 (121.12)

Number of schools 116 122 105 79 9 431

Programs

9th grade program seats 88.20 (36.60) 84.60 (71.29) 98.38 (58.91) 96.59 (52.50) 62.25 (27.55) 89.34 (57.18)

Number of programs: All 155 240 146 172 50 763

By admission methods

Uses admissions priority groups 123 154 87 94 42 500
Uses screening 68 139 100 115 37 459
Uses lottery only 2 9 5 3 0 19

By interest area

Arts 25 47 26 20 7 125
STEM 35 59 27 37 10 168

Notes : The standard deviations in each respective borough or in NYC are given in parentheses. Standardized values are indicated by
(std.). College/career rate indicates the proportion of students who graduated from high school four years after entering 9th grade and
then enrolled in college, a vocational program, or a public service program within six months of graduation. All schools and programs
have equal weight regardless of their number of seats. The numbers under By admission methods and By interest area denote the
number of programs. The sample excludes the nine specialized high schools. See Appendix E.4 for our definition of interest area. Uses
lottery only are the programs that use admission lotteries and neither screening nor admission priority groups.

standardized test scores, attendance, punctuality, interview, and auditions. Other programs
use lotteries to break ties within a priority group.21

2.2 Deferred Acceptance Algorithm: Theory and Practice

The DA algorithm has been gaining popularity,22 based partly on theoretical results that
promise certain desirable properties. One such property is that the mechanism is strategy-
proof for the applicants: truthfully reporting their preference rankings weakly dominates
any other strategy. Another such property is matching stability. An important feature of
matching stability is that the matching does not have any unmatched student-program pair
such that each side prefers the other to (one of) the current assignment(s), i.e., the matching
does not have any case of justified envy.23 However, these properties do not directly address

21Educational Option programs use both screening priorities and lotteries.
22DA is used in, for example, Boston, Chicago, Finland, Ghana, and Taiwan (Fack et al., 2019).
23Following the standard definition (e.g., Roth and Sotomayor (1992)), a matching is stable if there does

not exist: (1) any case of a blocking pair, i.e., an unmatched student-school pair where each side prefers the
other to [one of] the current assignment[s] (which might be an empty seat or no school assignment), and (2)
any case of individual irrationality, where a student [school] would prefer to remain unmatched [have one
additional empty seat] than to be matched to [one of] the current assignment[s]. It follows that a student
has justified envy if he is part of some blocking pair (Abdulkadiroğlu and Sönmez, 2003).
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distributional outcomes such as racial integration or the equity of assignments.
Even the two desirable outcomes promised by the theoretical results, namely, stability and

truthful reporting, may fail in practice. Survey- and experiment-based evidence shows that
a fraction of applicants do not truthfully report even in DA mechanisms (Chen and Sönmez,
2006; Calsamiglia et al., 2010; Hassidim et al., 2017; Rees-Jones, 2018; Hassidim et al., 2021).
Complementing these results, Ashlagi and Gonczarowski (2018) theoretically show that, in
generic cases, DA is not obviously strategy-proof in the sense of Li (2017); applicants with
limited rationality may not understand its strategy-proofness. Stability may also not hold in
DA; failure of truthful reporting may undermine stability (Gale and Shapley, 1962; Artemov
et al., 2017; Fack et al., 2019) or when students consider and choose from only a limited set of
schools. Furthermore, theoretically ideal versions of DA that guarantee strategy-proofness
and stability are only occasionally implemented in practice (Abdulkadiroğlu et al., 2009;
Haeringer and Klijn, 2009).

The matching procedure in NYC creates incentives for the applicants to deviate from
truthfully reporting their preferences. This is because NYC’s implementation of DA deviates
from its canonical implementation in two respects. First, while the canonical implementation
allows applicants to list arbitrarily many school programs, in NYC, applicants can list only
up to 12 school programs. Students who wish to apply to more than 12 school programs
must then decide which of these programs will be listed, which optimally depends not only
on their preferences but also on their admission chances to the schools. Reflecting this,
the 2017 NYC High School Directory states that “[i]f you are applying to ‘reach’ programs,
be sure to include ‘target’ or ‘likely-match’ programs on your application.” Second, while
the canonical implementation conceives a single round of applications, in NYC, there is an
aftermarket that follows the main round.24 If a student believes that she can be matched to
a school in this aftermarket, she may choose not to apply to this school in the main round.

In addition, given that there are more than 700 school programs in NYC, it is likely that
students are not aware of many of them. Corcoran et al. (2018) has found that providing
information about the nearest 30 schools with above-median graduation rates altered the
students’ choices in NYC. Additionally, lower-income families may have differentially less
information about high-performing schools due to various reasons (Sattin-Bajaj, 2016).

In the next section, we document descriptive evidence of informational frictions and the
influences of admission chances in school applications.

3 Evidence of Frictions, Disparities, and Choice Behavior

Section 3.1 introduces the data used. Evidence in Section 3.2 suggests a substantial lack of
awareness of the schools. It also indicates that students take admission chances into account

24Until 2019, there was a second round of DA for the schools with remaining seats (see, e.g., Narita,
2016). In 2020, the waitlist system replaced the second-round DA.
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when applying to schools. Section 3.3 documents the patterns of racial disparities and usage
of school choice.

3.1 Data

Our primary dataset is the administrative records provided by the NYC Department of Ed-
ucation (DOE) for the 2016–2017 academic year. The data include students’ rank-ordered
choices, final school assignments, admissions priorities, schools’ rankings over students, and
demographic information. The demographic information includes students’ race, English
Language Learner status, home address, subsidized lunch status, disability status, and per-
formance on statewide seventh-grade English and math tests. We restrict our sample to
eighth graders attending an NYC DOE public school at the time of application mainly due
to missing demographic data for other students.25 We also use publicly available school-level
data, including those from NYC’s High School Directory and School Quality Reports.

3.2 Evidence of Frictions

Our descriptive analysis indicates that students face substantial frictions in learning about
the school options, and that they drop the schools with lower admission chances out of the
list even when the list constraint is not binding. We first examine the students’ awareness of
schools by inspecting whether the page at which a school appears in the NYC High School
Directory affects the application rates to the school’s programs. According to Sattin-Bajaj
et al. (2018), guidance counselors reported that the printed directory, which is about 600
pages long, is the main source of information for the applicants. In the directory, schools
are first grouped into the five boroughs of NYC, and within each borough, they are ordered
alphabetically by their names. If the alphabetical ordering is independent of unobserved
tastes, lower application rates for the schools appearing on later pages would suggest that
the students are not considering all the schools.

Table 3 reports estimates from a probit model predicting whether a student applies to a
program, focusing on the effect of the positioning of the program’s school in the directory.
A student is considered to have applied to a program if that program appears anywhere in
their rank-ordered list. Page rank denotes the within-borough rank of the schools in terms
of the order in which they are listed in NYC’s High School Directory. We first focus on
the results for the All eligible sample, which includes all programs each student is eligible
for. Columns (1) and (2) show that the ordering significantly impacts the application rates.
Moving a school’s position backward by 100 page ranks (typically equating to about 125
pages) is associated with a 24.16% decrease in application rates, even after controlling for a

25The sample includes the students who opted out of the school choice process, who constitute 8.06% of
the sample. There are some ninth graders who participate in the process, but they constitute 0.01% of the
total applicants, and they can apply to only a subset of the schools.
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rich set of observables (Appendix E.5), as suggested by the average difference effect (ADE)
relative to the mean application rate. For the purpose of exposition, we define the ADE as
the average increment in the (predicted) inclusion probability when each school’s position is
first set at the frontmost position and then moved to the 100th position, while holding other
covariates fixed.

The results also hint at disparities in information. Separate estimates by ethnicity using
the All eligible samples suggest that the negative associations are stronger and significant
for Black and Hispanic students. Such patterns may emerge if Asian and White students
have better information sources or better neighborhood schools and can therefore rely less
on the directory. Our main analysis suggests Asian and White students’ consideration sets
are more aligned with their preferences (e.g., see Table 6). We also find they have better
neighborhood schools (Figures 1 and B.1).

We now assess the assumption that page rank is uncorrelated with unobserved prefer-
ences. Table B.1 regresses the page rank on observable school characteristics. The F -statistic
has a p-value of 0.163, and no coefficients are found to be significant at the 5% level, showing
that page rank is largely uncorrelated with preferences as captured by observable school char-
acteristics. The results for the Near samples in Table 3 also support the assumption. The
samples in these columns consist only of the student-program pairs for which the high school
program is within a half mile from the student’s home or within a quarter mile from the
student’s middle school. If students were applying less to later-page schools in the columns
for the All eligible samples due to unobserved preferences, such negative associations should
continue to appear in the Near samples. On the other hand, if students are not applying
to these schools due to a lack of awareness, the association should tend to disappear in
these samples, given that students are likely aware of the schools near their homes or middle
schools. Our findings align closely with the latter scenario. Conversely, if we take as given
that alphabetical ordering is independent of preferences, the results for the Near samples
support the assumption that the students are indeed aware of these nearby schools. We
utilize this assumption to estimate the model of application behavior in Section 6.

Table 4 summarizes OLS regressions of applications on admissions priority groups. We
restrict these regressions to students who did not exhaust their lists, implying that the list
length constraint is not binding for them.26 In such cases, a weakly dominant strategy is
truthful reporting in the order of preferences independent of beliefs about admission proba-
bilities, rendering priorities inconsequential apart from potential correlation with preference.

Yet the results demonstrate a substantial influence of priorities on whether the student
26The regression uses admissions priority groups we reconstruct, since the observed priority numbers

are only available for student-program pairs for which the student applies for the program, as described in
Section E.1. However, we find 19.59% of the observed priority numbers are incorrectly predicted (based on a
sample of 20,000 students), 97.05% of which involve attendance at information sessions. Because of this, we
further exclude 238 programs (out of 743) that employ (as a device to determine priority groups) “attendance
at information sessions.”
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Table 4: Regressions of Application on Priority Group

Dependent variable: student applies to the program

Sample All All Near and likely Near and likely

Priority -0.002*** -0.026*** -0.055*** -0.091***
(0.0001) (0.005) (0.005) (0.025)

Mean application rate 0.88% 0.88% 15.07% 15.07%
Controls Yes Yes Yes Yes
Program fixed effects No Yes No Yes

Observations 8,669,191 8,669,191 31,623 31,623
R2 0.0567 0.0494 0.32 0.164
Adjusted R2 0.0567 0.0494 0.319 0.158

Notes: *p<0.1; **p<0.05; ***p<0.01. An observation is a student-program pair. Students who
listed 12 programs, ineligible student-program pairs, and programs with information sessions
are dropped. Standard errors are clustered at the program level. See Appendix E.5 for details.

lists a program; lower-priority students (i.e., those with higher values of the priority variable)
tend not to list the program. This effect holds true irrespective of whether we account for the
potential correlation of priorities with unobserved program quality via program dummies.
The inclusion of fixed effects intensifies the effect of priorities, suggesting that programs that
attract students for reasons unexplained by observables often accommodate more priority
groups. Even when we narrow down the analysis to the Near and likely sample, consisting of
student-program pairs where students presumably perceive high admission chances and the
students are likely to know that because the programs are near their home or middle school,27

the effect persists albeit at a weaker strength relative to the mean application rates, using
our preferred estimates with program dummies. Overall, the analyses suggest that students
may omit schools they feel are out of reach for them. Our model of school applications
therefore allows for such possibility.

Given indications that students consider admission chances when deciding whether to list
a program, it is also of interest to explore whether these chances also affect the rankings in
the report. Having fixed which programs to list, factoring in admission chances when ranking
the programs cannot benefit the students, regardless of whether the list length constraint
binds (Haeringer and Klijn, 2009). Table 5 presents OLS regressions of the submitted rank
of a program on the student’s priority group, using a sample of applicants who listed a
given number of programs. The regressions include program dummies and other controls
(Appendix E.5). The effects of priorities on rankings are somewhat mixed and are milder than

27More specifically, these are the student-program pairs such that the program is within a half mile from
the student’s home or a quarter mile from their middle school and satisfies one of the following criteria: (1)
the program did not fill its seats in the prior year, (2) the student belongs to the program’s first priority
group and the percent of offers that went to this group in the prior year is less than 90% (as stated in the
high school directory), or (3) the student scored higher than 350 in both the NY State Math and ELA tests;
4.18% of students satisfy the last criterion.
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Table 5: Regression of Submitted Rank on Priority Group

Dependent variable: rank in submitted report

No. of listed programs 2 4 6 8 10 12

Priority -0.138 -0.048 0.124 0.371*** 0.443*** 0.477***
(0.091) (0.083) (0.086) (0.118) (0.137) (0.104)

Controls Yes Yes Yes Yes Yes Yes
Program fixed effects Yes Yes Yes Yes Yes Yes

Observations 3,750 14,858 29,666 36,794 33,316 130,460
R2 0.0246 0.0152 0.0122 0.0157 0.0172 0.0154
Adjusted R2 -0.122 -0.031 -0.0113 -0.00316 -0.00361 0.0101

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. An observation is a student-program pair.
Refer to Appendix E.5 for the controls used. Standard errors are clustered at the
program level.

their effects on the decision to list a program. For instance, among students listing twelve
programs, moving to the next less-preferred priority group (a unit increase in the variable
priority) results in a drop of 0.477 in rank (0.477/11 = 4.3% of the available variation in
rank). However, for those listing only two programs, the same shift in priority tends to raise
(albeit insignificantly) the program’s rank by 0.138 slots (0.138/1 = 13.8% the of available
variation). This seemingly counterintuitive result, especially when viewed alongside Table 4,
may stem from selection bias; the sample only includes listed programs. If a lower-priority
program makes it to the list despite being unlikely (as seen in Table 4), it suggests a strong
preference for that program.

Overall, it is difficult to definitively conclude whether admission chances influence how
a student ranks a program based on Table 5. We further explore this possibility using the
model of students’ application behavior in Section 4. The model also takes into account our
descriptive observations that students may not be aware of all the schools and that they
seem to factor in chances of admission when choosing which schools to list.

3.3 Patterns of Disparities and Choice

Figure 1 documents some patterns of racial disparities in neighborhood schools and the usage
of choice. First, focusing on the dashed curves, we observe substantial racial disparities in
the applicants’ neighborhood schools (within a mile from home). These disparities do not
disappear even after controlling for applicants’ performance in the middle school mathematics
tests; the neighborhood schools of even the best-performing Black and Hispanic students have
lower college/career rates than those of the lowest-performing Asian and White students.

With the solid curves, we gather several patterns regarding how students utilize school
choice. Applicants do take advantage of school choice and apply to higher-performing

14



Figure 1: Nearby and Applied Schools, by Ethnicity

Notes: College/career rate denotes the school’s proportion of students who enrolled in college, a voca-
tional program, or a public service program within six months of graduation. Student’s middle school
math score is the applicant’s performance in the New York State Math test during seventh grade. The
lines represent smoothed conditional means, using cubic regression spline with shrinkage. The shaded
regions represent 95% confidence intervals. The dashed lines are drawn using the schools within one mile
from the applicant’s home address. The solid lines are drawn using the schools that the applicant has
listed on the submitted rank-order report. A sample of 20,000 students is used.

schools.28 In terms of the schools that applicants apply to, the racial disparities appear
reduced. High-performing applicants are more likely to apply more aggressively to high-
performing schools. These patterns could be explained by differences in preferences, in
awareness, or in assessments about admission chances.

4 Model of Students’ Application Behavior

This section lays out our main model: how students apply to schools. In our model, students
maximize expected utility subject to two types of optimization frictions. First, they may
consider only a limited set of school programs due to a lack of awareness or the perception
that they have no chance of being admitted. Second, even when they consider the programs,
they may still have incorrect beliefs about the equilibrium assignment probabilities. In
particular, these incorrect beliefs may reflect students’ misunderstandings of the properties
of DA.

Specifically, a school program is considered by an applicant if (1) he is aware of that
28Figure B.1 shows that students are typically matched to schools whose characteristics fall between those

of the neighborhood schools and those of the schools they apply to.
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school program, and (2) he feels the school is reachable, i.e., that he has a positive chance
of assignment to that school program upon listing it.29 The consideration set of applicant i,
which is the set of school programs considered by applicant i, is denoted by Ci. Consideration
of school program j by applicant i is determined by a latent variable cij ∈ (−∞,∞].30 A
school program is considered if and only if cij > 0. We assume that students do not consider
ineligible schools.

Formally, each applicant i solves

max
r∈R(Ci)

J∑
j=0

prijvij (4.1)

where r denotes a report, j ∈ {1, · · · , J} ≡ J denotes a school program that is potentially
matched through the application procedure, j = 0 is the outside option,31 prij ∈ [0, 1] denotes
i’s subjective assessment of the probability of being assigned to j upon submitting report
r, and vij is the utility that i derives from being assigned to j. The applicant, with the
consideration set Ci, chooses a report r from R(Ci), the set of all ordered lists of school
programs in Ci with length at most 12, including an empty list denoted by r = ∅; formally,
R(Ci) ≡ {∅} ∪

⋃12
k=1

{
(j1, . . . , jk) ∈ Cki |jm 6= jn for m 6= n

}
. The empty list represents non-

participation in the main (first) round of the application process. Although r is an ordered
list, we occasionally abuse notation and treat r as if it were an (unordered) set; for instance,
we write j ∈ r to denote that j is written somewhere in r, regardless of its position in r. The
solution to the maximization problem in Equation 4.1 is denoted by ri. Multiple solutions
occur with probability zero under our assumptions and are ignored.

We model nondegenerate32 beliefs about assignment probabilities similarly to Kapor et al.
(2020), which is motivated by the cutoff and score representation of the matching algorithms
(Agarwal and Somaini, 2018; Azevedo and Leshno, 2016). The representation uses two
quantities: scoreij and cutoffij. Being a function of admissions priority groups, screening

29This definition differs from the typical definition of consideration in the discrete choice literature in that
we impose (2) in addition to (1). However, the imposition of (2) is natural in this setting where assignments
are stochastic at the time of reporting. Furthermore, (the lack of) consideration may be interpreted to
additionally capture some factors other than awareness and zero admission chances: fear of rejection, risk
aversion, or the (psychological) cost of application. In other words, the model of consideration intends to
capture any reason other than preferences that might prevent a student from listing a school program. We
focus on awareness and degenerate assignment probabilities as the main reasons why students may drop the
school program from the list, as evidence suggests these channels are significant.

30In Sections 5 and 7, we will assume that there are certain school programs that are surely considered
by an applicant; such a school program is denoted by cij =∞ for notational convenience.

31The outside option is interpreted as the inclusive value of remaining unassigned in the main round of
the application process.

32Zero admission chances are modeled through consideration. Upon consideration, the students have
nonzero admission chances. In the paper, beliefs refer to the beliefs about admission chances upon consid-
eration, implying positive subjective admission chances.
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rankings, and lotteries, scoreij represents program j’s evaluation of applicant i, with a lower
score denoting higher preference. One important aspect of DA is that scoreij is not a function
of the student’s submitted ranking of the school program.

On the other hand, the student-type-specific cutoffij ≡ cutoffj(typei) determines how
many students of typei are admitted by program j. In NYC, typei indicates whether the
student has disabilities. Separate capacities are set for each type.33

Under the cutoff-score representation, each student is matched to his first school program
in the list for which scoreij is below cutoffij. That is,

i is matched to j

⇔ j is the highest-ranked school program in ri for which cutoffij − scoreij > 0.

We model beliefs about the assignment probabilities based on this representation. Each
student forms subjective assessments of his cutoffij − scoreij for each school program j.
For student i, his assessment of diffij := cutoffij − scoreij is represented by the student-
specific random variable d̃iffij(k) := c̃utoffij − s̃coreij(k), where k denotes the rank of j in
i’s report. The randomness in d̃iffij(k) represents the student’s perceived uncertainty about
the scores and the cutoffs. Note that the distribution of s̃coreij(k) can depend on the rank
k; although programs’ ranking in students’ reports cannot affect the scores in DA, we allow
for the possibility that students may not understand this property.34 On the other hand,
we do assume that applicants are monotone in their misunderstanding; while they might
mistakenly believe that ranking a school higher can improve their scores, they correctly
understand that ranking a school program lower cannot. Formally, we assume k < k′ implies
s̃coreij(k) ≤ s̃coreij(k′) for all (i, j) in any realization.

Using the scores-and-cutoffs representation, we model nondegenerate subjective beliefs
as follows. For program j listed in report r,

prij = Pi(d̃iffij′(krj′) < 0 for all j′ listed before j)Pi(d̃iffij(krj ) > 0) =
k−1∏
l=1

(1− qijrl l)qijk (4.2)

where krj denotes the rank of j in report r, qijk denotes Pi(d̃iffij(k) > 0), and jrl denotes the
school program listed at the lth spot in r. The formulation implicitly assumes that students
regard admissions into programs as independent events conditional on the observables to the
students, as the (subjective) joint distribution of

(
d̃iffij(krj )

)
j∈r is the product of marginal

distributions. This assumes away the possibility that students may believe that the screening
33For school programs that employ the educational option admission method, type also depends on the

applicant’s reading category as determined by the English Language Arts (ELA) score in the middle school.
34If students correctly understood that the rank cannot affect the scores, they would always truthfully

rank the school programs among those listed. Even in such a case, however, it is still possible that some
unlisted program is considered and preferred to a listed program if the list length constraint binds.
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outcomes of the programs can be unobservably correlated or that they correctly understand
that a single lottery is used to break ties for all lottery-based programs. This simplifying
assumption allows us to reduce dimensionality in representing the optimal report choice
problem in Equation 4.1 as a “dynamic” problem solvable through backward induction as in
Calsamiglia et al. (2020) (Appendix G.1). This makes the computation feasible even with a
vast choice set of rank-ordered reports.

For j not listed in the report r, prij = 0; that is, the student correctly believes that he
cannot be matched to j in the main round unless he lists it in the report.

5 Identifying Preferences, Consideration, and Beliefs

Here, we outline an intuitive overview of the identification strategy, demonstrating how the
three channels in our model—preferences, consideration, and nondegenerate beliefs—can
be separated out. These ideas are formalized in Appendix A, where we develop sufficient
conditions for nonparametric identification.

We first demonstrate that there is variation in the data that is affected only by preferences
and consideration, and not by nondegenerate beliefs: (1) the number of school programs in
an applicant’s list and (2) whether a program is written on an applicant’s list, provided that
the applicant’s list contains strictly fewer than 12 programs.

Observation 1 (Variation reflecting only preferences and consideration). Suppose applicant
i’s list ri has strictly fewer than 12 school programs. Then, j ∈ ri if and only if both
cij > 0 and vij > 0. Furthermore, ri has strictly fewer than 12 programs if and only if
{j ∈ J |vij > 0, cij > 0} has strictly fewer than 12 programs.

The proof is given in Appendix D.3. Intuitively, if you are not constrained by the length
constraint and you consider a program (thus aware of the program and perceive it as reach-
able), you have no reason to drop it from your report, as long as you prefer it to the outside
option. Conversely, if you do not prefer it to the outside option or do not consider it, you
will not list it.

Given that Observation 1 shows that there is data variation that is strictly affected by
preferences and consideration, a natural question is whether there is also variation that can
be used to disentangle preferences from consideration. Intuitively, such separation may be
possible if (1) there were some school programs that are “surely” considered by an applicant
or if (2) there were shifters of consideration that were excluded from utilities. We define the
surely considered set of applicant i as the set of programs assumed to be (surely) considered
by applicant i. It is denoted by Si, and Si ⊆ Ci with probability 1. The following observa-
tion, which follows as a corollary of Observation 1, is helpful in separating preferences and
consideration using the surely considered sets.
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Observation 2 (Variation only reflecting preferences). Suppose applicant i’s list ri has
strictly fewer than 12 school programs and that j ∈ Si. Then, j ∈ ri if and only if vij > 0.

Combined, Observations 1 and 2 provide the basis for separately identifying preferences
and consideration. Intuitively, one may first identify preferences using Observation 2 and
then identify consideration using Observation 1. Propositions A.1 and A.2 in Appendix A
formalize the intuition here by providing sufficient conditions under which the distributions
of preferences and consideration sets are nonparametrically identified. These results also
clarify how the consideration instruments that are excluded from preferences, which we did
not utilize in Observations 1 and 2, aid in identification.

We discuss how the potential selection issues—Observations 1 and 2 only utilize the
students who do not exhaust all slots in the report in the two Observations—are resolved by
an independence assumption in Section 7.1. Propositions A.1 and D.1 show the conditions
under which the selection issues regarding the exhaustion of the slots do not arise without
the independence assumption.35

To identify nondegenerate beliefs, we may use two kinds of remaining variation in the
data. First, in Observations 1 and 2, we did not utilize the information in how the applicants
ordered the programs; we used only the information of whether programs were listed. Second,
we have not yet utilized the variation in the portfolio choices of applicants who had more
than 12 considered programs that they preferred to the outside option. These aspects of
data variation are affected by beliefs in addition to preferences and consideration.

Observation 3 (Variation reflecting nondegenerate beliefs).

(i) Suppose that the applicant has more than 12 programs that are considered and preferred
to the outside option. Then, the identities of the programs in ri are determined as
a function of

(
vij, cij, (p

r
ij)r∈R(J )

)
j∈J . In particular, the function is not constant in

(prij)j∈J ,r∈R(J ).

(ii) Suppose that ri contains at least two programs. Then, ri is determined as a function of(
vij, cij, (p

r
ij)r∈R(J )

)
j∈J . In particular, the function is not constant in (prij)j∈J ,r∈R(J ).36

In a restricted setting, Proposition A.3 outlines the conditions for nonparametric iden-
tification of beliefs. As nonparametric identifiability in a general setting is ambiguous, our

35The key is that these results utilize the presence of a shifter of consideration (excluded from utilities) in
addition to the surely considered schools, unlike in the Observations. Proposition D.1 further assumes the
presence of a utility shifter that is excluded from consideration. On the other hand, case (ii) of Proposition
D.2, which does not utilize the excluded shifters (and rather only utilize surely considered sets), still allows
us to bound the joint cumulative distribution of the utilities among the surely considered programs within
an interval per each student. The average length of the intervals (across students) is approximately 0.16.

36From the construction of the maximization problem in Equation 4.1, report ri and the identities in the
report is a function of (prij)j∈J ,r∈R(J ). To see examples of nonconstancy of the functions with respect to
(prij)j∈J ,r∈R(J ) under a simplified setting, see the cases in Proposition A.3 and the corresponding proof.
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parametric specification of beliefs only intends to gauge the degree of truthtelling, separately
for when the list length constraint binds and when it does not. Intuitively, the variation in
Observation 1 and 2 identifies the distribution of preferences and consideration conditional
on observables. This then determines the distribution of truthful reports among considered
programs. In particular, these reports should exhibit a declining trend in predicted utilities
(which can be constructed from the identified preferences) as we descend the list. By con-
trasting this with the diminishing rate of predicted utilities in actual reports, we can assess
the degree of truthfulness in these reports (Figure B.5).

6 Empirical Specification

Student Preferences The utility vij in our empirical analysis is specified as

vij = xvjβ
v
ethi + zvijα

v
ethi + εvij,

where xvj denotes the vector of observed program characteristics and zvij denotes the vector of
observable variables that vary across i or (i, j). The idiosyncratic taste shock is represented
by εvij ∼i.i.d N(0, 1), and we assume that it is independent of (xvj , z

v
ij).37 The utilities vij are

normalized in scale and location. The scale is normalized by setting the standard deviation
of εvij equal to 1. The location is normalized by setting the value of the outside option to zero,
i.e., vi0 = 0. Thus, vij is interpreted as the utility of j relative to 0. As we allow i-specific
terms in zij, the value of the outside option relative to all the inside options can vary across
these student-level observables. The parameters are specified separately according to the
four ethnicities.38 The vector xj includes, for example, college/career rate, average middle
school math achievement, ethnic composition, and program interest area dummies. The
vector zij includes subsidized lunch status, distance to school, and home borough dummies.

Consideration We specify the latent variable cij as

cij =

{
xcjβ

c
ethi + zcijα

c
ethi + εcij if j /∈ Si

+∞ if j ∈ Si

where Si denotes the surely considered set for applicant i, which we specify below. The
vector xcj includes observed program characteristics, and zcij denotes the vector of observable
variables that vary across i or (i, j). The idiosyncratic shock is represented by εcij ∼i.i.d

37The assumption may be mild in the sense that we do not need to regard the coefficients on (xvj , z
v
ij) as

causal in the counterfactual analyses.
38Native American and Multi-racial students, who make up 1.6% of the sample, were grouped with

White students, comprising 15% of the sample. This decision was based on the similarity in observable
characteristics between these groups and the White student population.
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N(0, 1),39 and we assume that (εcij)j is independent of (xcj, z
c
ij, ε

v
ij)j, implying that dependence

of vij and cij is modeled only through observables.40 The scale is normalized by setting the
variance of εcij equal to 1. The parameters are specified separately according to each ethnicity.
The parameters encapsulate the association of each characteristic with the likelihood of a
student being aware of a program and perceiving it as reachable.

In our specification, the observables (xcj, z
c
ij) contain all the observables that enter utility,

i.e., (xvj , z
v
ij), with a trivial exception.41 On the other hand, there are variables that only

enter (xcj, z
c
ij) but not (xvj , z

v
ij). These variables reflect the order in which the school program

appears in the school directory within its borough, whether the program is located in the
borough where the student lives, an indicator for the program being close to the applicant’s
middle school, and a proxy for applicants’ admission probabilities at the program.

Specifically, the page rank variable records the order in which the program’s school ap-
pears in the NYC High School Directory (ranked within its borough), which the students use
as the main reference for the application process and is about 600 pages long. The schools
are ordered alphabetically within their respective boroughs in this directory. Because appli-
cants may overlook the schools that are listed later, the page rank may shift consideration.
However, because the schools are ordered alphabetically, we argue that page rank is ex-
cluded from the preferences. Section 3.2 discussed how Tables 3 and B.1 are consistent with
the hypothesis. We allow a program’s distance from an applicant’s middle school to affect
consideration, as the applicant may be more aware of the schools close (within one mile)
to her middle school. A student’s (objective) admission probability to the program likely
influences her assessment of having a positive chance of admission, and therefore we include
its proxy in the consideration equation. The proxy is calculated as the difference between
her objective expected scores and cutoffs; see Appendix E.2 for details. Whether a student
resides in the same borough as a school program could influence the student’s awareness, in
part because schools are categorized by borough in the directory. It can also influence the
student’s subjective assessment of whether the program is reachable, as priority groups often
depend on whether the student’s home borough matches the program’s borough.

The surely considered set Si is the intersection of the two sets: (1) the programs that
are within a half mile from her home or a quarter mile from her middle school, and (2)
the eligible programs that are likely for the student and the student is in their first priority

39With the independence assumption, the model becomes an alternative-specific consideration model
(Swait and Ben-Akiva, 1987). For more discussion, see Abaluck and Adams-Prassl (2021).

40Proposition D.1 and Agarwal and Somaini (2022) suggest joint distribution of (εvij , ε
c
ij)j can be non-

parametrically identified if there is a special regressor that shifts utility but is excluded from consideration
(in addition to a shifter of consideration excluded from preferences). While we have a variable that enters
only utility and not consideration—an indicator for high school being the same as the applicant’s middle
school—it is far from being a special regressor.

41An indicator for the program being in the same school as the student’s middle school is in zvij but is
not in zcij . Such a school is assumed to be surely considered (as we explain below) and therefore excluded
from zcij , which only affects those not surely considered.
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group. Consistent with the usage of the term in Table 4, a program is likely for the student
if (a) the program did not fill its seats in the prior year, (b) the student is in the program’s
first priority group, and fewer than 90% of students admitted in the prior year belong to this
group, or (c) the student scored higher than 350 in both the NY State Math and ELA tests;
4.18% of students satisfy the last criterion. Despite the strength of being a likely program
as a criterion for ensuring that a student feels the program is reachable, evidence in Table
4 indicates that priority groups still influence application rates. Consequently, we require
further that the student be within the first priority group. The requirement that the program
must be proximate to the student’s home or middle school serves to ensure the student’s
awareness of the program and of their high (and therefore nonzero) chances of admission.
This specification results in 2.16 surely considered programs per applicant on average. Note
that the surely considered sets are entirely determined by observables, while consideration
sets are jointly determined by observables and unobservables.

Beliefs Once a student considers a program, his subjective assessments of assignment prob-
abilities are derived from his beliefs about the actual cutoffs and scores. As explained in Sec-
tion 4, student’s anticipation regarding the actual diffij ≡ cutoffij − scoreij ≡ cutoffj(typei)−
scoreij is represented by the random variable d̃iffij(k), where k is the rank at which the
student places the program within his report (Kapor et al., 2020). We parametrize the
distribution of d̃iffij(k) as

d̃iffij(k) := c̃utoffij − s̃coreij(k)

= cutoffij − Eobj[scoreij] + εbijk

≡ cutoffij − Eobj[scoreij] + βethi
rank log(k)︸ ︷︷ ︸

:=δdiffijk

+νij

where δdiffijk represents the student’s subjective (mean) prediction of cutoffj(typei)−scoreij. The
objective part cutoffij−Eobj[scoreij] is calculated based on the data of the admission decisions
by the programs as outlined in Appendix E.2. Roughly, we construct the expected scores
based on the written rules about admissions priority groups and on the data about how the
students were ranked by the programs that use screening policies. The cutoff is determined
by the score of the least preferred applicant among those accepted. The subjective part—
prediction bias—arises when βethi

rank 6= 0, which implies that the students incorrectly believe
that how they rank the program influences their scores in DA.

The last term νij ∼iid Logistic(0, σethiν ) encapsulates the student’s assessment of his own
prediction error; larger σethiν implies more doubt about his own assessment. Students un-
derstand that prediction errors can arise for two reasons: their predictions may be biased,
and there are uncertainties, such as admission lotteries, that are inherently impossible to
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resolve. From the perspective of the student, his subjective assessment d̃iffij(k) follows
Logistic(δdiffijk , σethiν ), implying

qijk ≡ Pi(d̃iffij(k) > 0) = Pi

(
νij

σethiν

>
−δdiffijk
σethiν

)
=

(
1 + exp

(−δdiffijk
σethiν

))−1
.

For each ethnicity, the two parameters that govern belief are (βethi
rank, σ

ethi
ν ). Together, they

determine the degree of truthful ranking behavior and to which such behavior is affected by
the list length constraint. When βethi

rank = 0, subjectively optimal lists are truthfully ordered in
terms of utilities among the listed programs (Haeringer and Klijn, 2009). A student may still
prefer some unranked program over certain ranked programs for two reasons: (1) the student
did not consider the program because he believed he had de-facto zero admission chance or
was unaware, or (2) the student did consider the program, but his chances or utilities were
low enough that he decided to exclude it from his twelve slots to list another program; the
latter case only arises when the length constraint binds. On the other hand, if βethi

rank < 0, the
submitted rankings may not be truthfully ordered in terms of utilities even among the listed
programs.42 The level of σethiν , which governs the level of doubt the student has about his
prediction, can also affect the degree of truthtelling. If σethiν =∞, which may be understood
as “giving up” on trying to predict the admission chances, then students rank the programs
truthfully among the considered programs that are preferred to the outside option until they
run out of such programs or exhaust all the 12 slots. This implies that ranked programs are
always preferred to any considered but unranked program.

It follows that, when the list constraint binds, naive beliefs (σethiν = ∞) imply truthful
reporting among considered programs, while deviations may occur with sophisticated beliefs
(βethi

rank = 0 and small σethiν ). When it does not bind, the subjectively optimal strategies given
sophisticated and naive beliefs coincide. This demonstrates a core strength of DA that there
is no benefit in strategizing unless the list constraint binds.

7 Estimated Preferences, Consideration, and Beliefs

Section 7.1 outlines the estimation procedure. Section 7.2 presents a summary of the esti-
mated model.

7.1 Estimation

Estimation proceeds in two stages. In the first stage, we estimate preference and considera-
tion parameters using the partial likelihood of inclusion of programs in applicants’ reports.

42We assume students understand that ranking a program lower cannot improve their scores. This rules
out βethi

rank > 0.
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The second stage estimates the belief parameters using moment conditions comparing the
actual and the simulated reports, taking as given the estimates from the first stage.

The first-stage partial likelihood, guided by Observations 1 and 2 (or more formally,
Propositions A.1 and A.2), is a function only of preference and consideration parameters, and
not the belief parameters (βeth

rank, σ
eth
ν ).43 While Observations 1 and 2 are statements regarding

the pairing of programs with all students who do not exhaust all the slots (|ri| < 12), the
sample in the likelihood consists only of the student-program pairs for which the j-excluded
ri has fewer than eleven programs (|ri\{j}| < 11). This condition, being stronger than
|ri| < 12, is to resolve the selection problem. Under our specification that (εvij, ε

c
ij)j∈J is

i.i.d across j,44 we can show that our selection criterion |ri\{j}| < 11 is independent of
(εvij, ε

c
ij)j∈J (Lemma F.1), so that the distribution of the unobservables are unaffected by

such selection. The independence does not hold for |ri| < 12. Appendix F.1 delineates the
partial likelihood and shows that the true parameter vector maximizes it. We randomly
sample 4,000 students per ethnicity to facilitate estimation.45

In the second stage, belief parameters are estimated using the Generalized Method of Mo-
ments, taking as given the first-stage estimates for preference and consideration.46 Contrary
to the first-stage likelihood, the moment conditions incorporate the students who exhausted
all the twelve slots and (not only the inclusion but also) the ordering of programs in reports.
The moments compare simulated and actual reports in terms of the characteristics of the
programs being listed in the first top k ∈ {1, · · · , 12} slots, separately depending on whether
the applicant exhausts the twelve slots. They also capture the within-list variation in the
characteristics, intending to capture the degree to which applicants diversify their portfo-
lios. These moment conditions use the identifying information in Observation 3 or that in
Proposition A.3. The exact moment conditions are provided in Appendix F.2.

7.2 Estimates

Preference and Consideration In Table 6, we provide a summary of the key features
of the estimated parameters (raw parameter estimates are shown in Table 7). Students

43The partial likelihood further has a part that depends solely on preference parameters, to take advantage
of the variation suggested by Observation 2 (Appendix F).

44Such assumption precludes the use of a random coefficient model. However, the assumption may not be
overly restrictive. Pathak and Shi (2020) find little gains in performance from allowing for random coefficients
in the utilities, given the allowed heterogeneity in coefficients along the students’ observed characteristics.

45We also weight (i, j) pairs for which i surely considers j, so that such pairs have a combined weight
of 5% in the sample. In the current specification, such (i, j) pairs constitute only approximately 0.24% of
the sample; we amplify their importance by weighting. Without the weighting, the level of consideration
probabilities for the Asian and White students were not robust to different specifications. We hypothesize
that this might be due to page rank instrument being weaker for the Asian and White students, and therefore
having to rely more on other instruments or surely considered programs.

46The moment conditions also contain information about preference and consideration parameters. Hence,
joint estimation of all the parameters using the scores of the likelihood in the first stage on top of the moments
here would be more efficient. We proceed in two stages to keep the computation tractable.
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Table 6: Summary of Preference and Consideration

Asian Black Hispanic White

% Programs considered 8.97% 13.83% 10.48% 6.24%

% Programs surely considered 0.22% 0.29% 0.29% 0.19%

% Programs considered among those preferred to outside option 16.84% 11.66% 13.84% 11.53%

% Programs preferred to outside option 5.56% 6.12% 6.19% 6.43%

% Programs preferred to outside option among surely considered 12.93% 10.98% 12.25% 15.86%

% Programs preferred to outside option among considered 13.23% 6.62% 9.27% 13.26%

% Programs both considered and preferred to outside option 0.96% 0.99% 0.97% 0.73%

across all ethnicities are estimated to consider approximately 10.6% of programs on average.
White students consider the smallest proportion of schools, potentially since their average
distance to schools is the farthest (Table 1). The correlations between preference and con-
sideration appear stronger for Asian and White students. For Black and Hispanic students,
the proportions of considered programs Pr(cij > 0) are roughly equal to the proportions of
considered programs among those preferred to outside option Pr(cij > 0|vij > 0), suggesting
near independence of the two events cij > 0 and vij > 0. On the other hand, for Asian
and White students, the latter is roughly twice the former, indicating a positive alignment
between preference and consideration. The results also show that White students are the
most likely to prefer their surely considered programs.

Figure 2 summarizes preference and consideration estimates by race, illustrating sig-
nificant racial differences in both channels. A point in the scatter plots corresponds to a
program-race pair. Figures 2a and 2b depict the within-race average probability of a school
being preferred to the outside option or being considered. Figures 2c and 2d present the
within-race average predicted latent values of vij and c̃ij, where c̃ij adjusts cij for the fact
that sure consideration implies cij =∞ by construction.47

Our findings reveal that Asian and White students have stronger preferences for more
selective programs, represented by the average middle school math proficiency of incoming
students, compared to Black and Hispanic students. Although this trend might simply be
mirroring the geographical distribution of less selective schools, which tend to be located
further from Asian and White students’ homes (Figure B.1), results are similar even after
nullifying the effect of distance by re-calculating the latent values after setting the distance-
to-school variable to 0, as we do in Figure 2e. The patterns remain substantially consistent

47Specifically, we use extrapolated values of xcjβc
ethi

+zcijα
c
ethi

+εcij (which equals cij only for the not surely
considered programs) even for the surely considered programs. Across all students and ethnicity, predicted
latent variables are comparable across students and ethnicity, in the sense that they are one-to-one with
probability of consideration Φ(ˆ̃cij) and of being preferred to the outside option Φ(v̂ij), where ˆ̃cij = c̃ij − εcij
and v̂ij = ṽij − εvij .
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Figure 2: Probability and Latent Values for Preference and Consideration

0.9 

0.8 

0.7 

C 
0 

:;::::. 
g- 0.6

Q) 

32 

5 0.5 

0 

Q) 
I:: 0.4 

.g 0.3

0.2 

0.1 

1.5 

asian 

black 

hispanic 

white 

2 2.5 

0 

oo 

3 

0 

0 

average middle school math 

0 

3.5 

0 

0 O 

0 

0 

0 

0 

4 

0 

(a) Probability of Being Preferred to the Outside
Option

0.4 

0.35 

0.3 

0.25"C 

"C 
'iii 
§ 0.2

.ci 
0 

0.15 

0.1 

0.05 
0 

asian 

black 

hispanic 

white 

0 

o�----�-----�----�-----�----�----�

1.5 2 2.5 3 3.5 4 4.5 

average middle school math 

(b) Probability of Being Considered

2 
asian 

black 

hispanic 

1 
0 white 

0 0 

0 0 0 0 
0 0 

1u -1

-2

-3

-4 �

----

�

-----
�

----�-----
�

----

�

-----

� 

1.5 2 2.5 3 3.5 4 4.5 

average middle school math 

(c) Mean Latent Values for Preference

0.5 

0 

-0.5

-1

+-' -1.5
C 

:Q -2
en 
C 
0 
0 

-2.5

-3

-3.5

-4

0 

0 

0 

0 

asian 

black 
hispanic 

0 white 

0 

-4.5 �----�----�----�----�----�-----
1.5 2 2.5 3 3.5 4 

average middle school math 

(d) Mean Latent Values for Consideration

2 

1 

01n 
"Cl 

:i 
0 
.c 

"§: -1 

a. -2

-3

asian 
black 

hispanic 
0 white 

0 
0 O 0 

0 

0 0 

-4 �

----

�

-----

�

----�-----

�

----

�

-----
� 

1.5 2 2.5 3 3.5 4 4.5 

average middle school math 

(e) Mean Latent Values for Preference (Distance=0)

0.5 

0 

-0.5

-1

:i -1.5

0 

'§ -2

:2 
-2.5

0 

-3

-3.5

-4

-4.5

1.5 2 2.5 3 3.5 

average middle school math 

0 

0
0 

0 
0 

0 

asian 

black 

hispanic 

white 

4 

0 

(f) Mean Latent Values for Consideration (Dis-
tance=0)

Notes: For each ethnicity, each point in the scatter plot denotes a program.
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Table 7: Estimated Parameters by Race

Parameter Asian Black Hispanic White

Preference

Subsidized lunch 0.13 (0.01) 0.17 (0.01) -0.01 (0.01) 0.20 (0.01)
Lives in Brooklyn -0.51 (0.02) -0.29 (0.02) 0.00 (0.02) -0.52 (0.02)
Lives in Manhattan -0.80 (0.02) -0.19 (0.02) -0.00 (0.02) -1.03 (0.02)
Lives in Queens -0.75 (0.02) -0.30 (0.02) -0.16 (0.02) -0.37 (0.03)
Lives in Staten Island 0.31 (0.05) 0.01 (0.04) 0.14 (0.04) -0.33 (0.03)
High is middle 1.80 (0.12) 1.71 (0.06) 1.87 (0.06) 1.51 (0.09)
Distance to school -0.07 (0.01) -0.06 (0.00) -0.06 (0.00) -0.07 (0.00)
Arts -0.95 (0.04) -0.21 (0.02) -0.59 (0.02) -0.79 (0.02)
STEM -0.19 (0.02) -0.07 (0.02) -0.14 (0.02) -0.13 (0.03)
College/career rate 0.70 (0.11) 0.90 (0.08) 0.74 (0.08) 0.75 (0.12)
Avg. grade 8 math proficiency (std.) 0.38 (0.02) 0.15 (0.02) 0.16 (0.02) 0.36 (0.02)
Proportion Asian 0.15 (0.08) -0.61 (0.10) -1.38 (0.09) -0.63 (0.10)
Proportion Black -1.90 (0.08) -1.65 (0.06) -1.95 (0.06) -1.84 (0.09)
Proportion Hispanic -1.45 (0.08) -1.92 (0.05) -1.24 (0.06) -1.32 (0.08)
Proportion White -0.72 (0.09) -1.22 (0.10) -0.75 (0.10) 0.07 (0.09)

Standard deviation of εvij 1 1 1 1

Consideration

Subsidized lunch -0.14 (0.01) -0.25 (0.02) 0.02 (0.02) -0.26 (0.01)
Lives in Brooklyn -0.41 (0.02) -0.10 (0.02) -0.21 (0.02) -0.09 (0.02)
Lives in Manhattan -0.26 (0.03) -0.22 (0.03) -0.23 (0.02) 0.16 (0.04)
Lives in Queens -0.48 (0.02) 0.04 (0.03) -0.13 (0.02) -0.51 (0.02)
Lives in Staten Island -0.54 (0.04) -0.11 (0.04) 0.02 (0.05) -0.22 (0.03)
Borough match 0.73 (0.02) 1.15 (0.02) 0.99 (0.02) 0.76 (0.02)
High is near middle 0.62 (0.03) 1.49 (0.09) 1.40 (0.07) 0.72 (0.03)
Distance to school -0.15 (0.00) -0.04 (0.00) -0.08 (0.00) -0.15 (0.00)
Arts 0.05 (0.07) -0.22 (0.03) 0.21 (0.04) 0.13 (0.04)
STEM 0.42 (0.03) 0.03 (0.03) 0.10 (0.03) 0.13 (0.03)
College/career rate -0.19 (0.15) 0.24 (0.13) 1.13 (0.12) -0.31 (0.13)
Avg. grade 8 math proficiency (std.) 0.17 (0.02) 0.15 (0.02) -0.03 (0.02) 0.22 (0.02)
Page rank in borough (std.) -0.02 (0.01) -0.08 (0.01) -0.08 (0.01) 0.02 (0.01)
Proxy of objective admission probability 0.08 (0.01) 0.21 (0.01) 0.13 (0.01) 0.18 (0.01)
Proportion Hispanic -0.07 (0.12) -0.88 (0.10) -1.51 (0.09) -0.54 (0.10)
Proportion Black -0.29 (0.13) -0.83 (0.10) -2.07 (0.09) -0.63 (0.10)
Proportion Asian -0.67 (0.10) -2.84 (0.12) -2.08 (0.11) -1.20 (0.09)
Proportion White -0.17 (0.11) -1.81 (0.12) -2.40 (0.11) -0.15 (0.10)

Standard deviation of εcij 1 1 1 1

Beliefs

σethiν 10.68 (1.81) 12.00 (0.34) 8.03 (2.51) 9.36 (1.07)
βethi
rank -0.56 (0.23) -3.89 (0.16) -0.00 (0.12) -0.00 (0.16)

No. student-program pairs 2,216,059 1,999,245 2,129,397 2,564,323
No. surely considered student-program pairs 5,046 6,845 7,093 1,966
No. students 4,000 4,000 4,000 4,000

Notes: High is middle is an indicator of whether the student’s middle school is the same as the high school. College/career
rate indicates the proportion of students who graduated from high school four years after they entered 9th grade and then
enrolled in college, a vocational program, or a public service program within six months of graduation. High is near middle is
an indictor of a high school program being within one mile from the student’s middle school. Standardized values are indicated
by (std.). Intercepts are omitted for preference and consideration parameters as the ethnic compositions approximately sum
to one. A random sample of 4,000 students was used for each race. The counts of (surely considered) student-program pairs
include only those with |ri\{j}| < 11 for the reasons explained in 7.1.
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when school selectivity is replaced with school performance gauged through college/career
rates (Figure B.2) or when we use only a partial likelihood48 that only utilizes the surely
considered programs (Figure B.3).

We also note racial disparities in consideration. Black and Hispanic students are more
likely to consider less selective programs than Asian and White students, while such a pattern
disappears for selective programs. This pattern emerges partly because Asian and White
students typically live farther from less selective programs and because distance to schools is
an important determinant of consideration, especially for these groups (Table 7). The larger
impact of distance on consideration for Asian and White students may also be influenced by
the quality of schools in their neighborhoods. They tend to have better local schools (Figure
B.1 and Figure 1), potentially reducing incentives to explore distant schools, for instance,
through the school directory. Consistent with this hypothesis and mirroring the descriptive
evidence in Table 3, we find that page rank affects consideration more for Black and Hispanic
applicants (Table 7). White students live farther from schools in general (Table 1); after
removing the effect of distance, they are the second most likely group to consider highly
selective programs after Asian students (Figure 2f). If we assumed that students would
be aware of highly selective programs if the distance were negligible, the racial disparities
in consideration probabilities for these programs in Figure 2f would only reflect the varying
perceptions among races about the reachability of these programs, and not awareness. Under
the assumption, the figure suggests that Black and Hispanic students feel the highly selective
programs are less reachable compared to Asian and White students.

Beliefs Our two belief parameters (per ethnicity) determine the extent of truthtelling be-
havior when the list length constraint binds and when it does not. Table 8 indicates that
students tend to truthtell in both cases. The fractions represent how many of the simu-
lated subjectively optimal reports from our estimated model exactly match the simulated
truthful-among-considered reports.49 We define a report as truthful among considered if the
considered programs are ranked truthfully according to the utilities until either no more pro-
gram is preferred to the outside option or all 12 slots are filled. Note that such a report may
“skip” some programs that the student finds unreachable or is unaware of. The results show
that, regardless of whether the constraint binds, the subjectively optimal reports approx-
imate the truthful-among-considered reports. Section 8.3 discusses the implication of our
findings about the truthfulness of reports among all eligible (not just considered) programs.
As a diagnostic analysis, Figure B.5 overlays the plots of mean utilities against the rank
at which the program is listed. The downward trend in utility levels along the subjectively
optimal reports well approximates that of the observed reports from the data, suggesting
that our parameter estimates are in a reasonable scope. The subjectively optimal reports,

48See Appendix F.
49We use the same simulated utilities and consideration sets for both types of reports.
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Table 8: Fraction Truthful

List length Asian Black Hispanic White All

Truthful among considered

All reports 99.7% 98.2% 99.8% 100.0% 99.4%
Full (12 programs) 97.5% 93.4% 96.8% 98.8% 95.8%
Not full 99.8% 98.5% 100% 100% 99.6%

Truthful ordering among listed

All reports 99.8% 98.4% 100% 100% 99.5%
Full (12 programs) 99.6% 96.8% 100% 100% 98.8%
Not full 99.8% 98.5% 100% 100% 99.6%

Truthful inclusion among considered

All reports 99.9% 99.8% 99.8% 100.0% 99.8%
Full (12 programs) 97.7% 96.5% 96.8% 98.8% 96.9%
Not full 100% 100% 100% 100% 100%

Notes: In the top panel, the numbers represent the fraction of (sim-
ulated) subjectively optimal reports that are indeed truthful among
considered programs. The middle panel tabulates subjectively op-
timal reports in which the listed programs are written in the order
of decreasing utility. The bottom panel tabulates subjectively op-
timal reports that list the same set of programs as truthful-among-
considered reports, ignoring the ordering.

in turn, are almost indistinguishable from the truthful-among-considered reports, reflecting
that the belief parameters are in line with truthtelling among considered programs.

Since we do not accommodate individual heterogeneity in truthtelling attitude within
race,50 the findings here should not be literally interpreted to imply that almost no student
deviates from truthtelling. Instead, the results suggest that a representative student for each
race may be viewed as essentially truthtelling.

8 Impacts of School Choice and Counterfactual Analyses

8.1 Distributional Outcomes and Decomposition

We analyze the impact of school choice on (1) racial integration and (2) the proportion of
students matched to their top preferred programs by each race. We further quantify the
contributions of different factors by turning off the influences of each factor one at a time.
Table 9 summarizes the matchings used in these exercises.

Effects on Racial Integration We find that NYC’s school choice slightly promotes racial
integration, with the largest impact for Black students. Our analyses also reveal that student
preferences contribute to integration, relative to neighborhood matching, net of the effects

50The error term νij in the belief model is integrated out in the calculation of qijk and therefore individuals
with the same observables from each race have the same qijk. This contrasts with our model of preference
and consideration.
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Table 9: Matching Definitions

A. Matchings without school choice

Matching Matching method

Random Random allocation of students to the programs with capacity constraints

Neighborhood Minimize total distance traveled by the students to the programs with capacity constraints

B. Matchings with school choice

Matching Simulated? Preferences Beliefs Consideration Sets Screening Priority Groups

a. Baseline matchings

Actual No – – – – –

Estimated Yes Estimated Estimated Estimated Estimated Approximated

b. Decomposition matchings

Change to Truthful among Considered Yes Estimated Truthful among Considered Estimated Estimated Approximated

Change to Full Consideration Yes Estimated Truthful among Considered All eligible Estimated Approximated

Change to Random Screening Yes Estimated Truthful among Considered All eligible Random Approximated

Change to No Admissions Priorities
(Student-Preferences-Only Choice)

Yes Estimated Truthful among Considered All eligible Random None

Notes : Approximation solution was used in the minimization for Neighborhood matching (Appendix G.2). Actual matching refers to the actual school choice
matching in 2017 from the main round of DA. See Appendix E.5 for other details about the implementation of the matchings in the table.

from limited information and potential nontruthful behavior. Schools’ admission priorities
and screening policies tend to exacerbate segregation.

In Figure 3, we measure racial segregation by the isolation index, which is the average
proportion of students of the same ethnicity within each student’s matched program. We see
that isolation indices are similar or lower with the matchings representing school choice—
Actual or Estimated—compared to Neighborhood matching. We then sequentially shut off
each channel as described in Table 9. Changing the estimated beliefs to Truthful among
Considered does not lead to significant changes, which is natural as the beliefs are estimated
to be close to Truthful among Considered. Limited consideration is estimated to have mixed
impacts across races. Schools’ preferences—reflecting its screening policies and admissions
priority groups—act together to segregate races.

For the decomposition exercises, note that we first deactivated the two student channels
(regarding beliefs and consideration) before turning off the school channels. We chose this
approach to avoid making assertions about how changes in admission policies will alter
consideration sets and subjective beliefs.

While we observed both similarities and differences in preferences across races (e.g., in
Figure 2), overall, student preferences work to integrate races. This is evident when we
compare Student-Preference-Only School Choice allocation—resulting from DA with fully-
informed students making truthful reports and programs randomly ranking the students—
with Neighborhood allocation. Figure B.6 compares the density of the proportions of same-
ethnicity students under Random, Neighborhood, and Actual allocation.
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Figure 3: Isolation Indices by Matching—Decomposition
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Notes: Each bar represents isolation index of an ethnic group in a matching. See Table 9 for the
definitions of the matchings.

Effects on Assignment to Preferred Programs by Race We find that school choice
increases the likelihood that students are matched to one of their top preferred programs,
regardless of ethnicity. However, the gains are mitigated by limitations in consideration.
Such limitations are more consequential for Black and Hispanic students.

Each bar in Figure 4 depicts the fraction of students who are matched to one of their
top five51 preferred programs based on their utilities. These are the top five programs they
would have preferred the most if they considered all eligible programs. First, focusing on
Neighborhood matching, we see that only a small fraction of the students are placed in their
top five preferred programs. White students are the most likely to be matched to one of
their preferred programs in this matching. We also observe that school choice—represented
by Estimated—tends to increase the proportion of students placed in their top five preferred
programs compared to Neighborhood matching, regardless of students’ ethnicity. The im-
provement is large: it increases such proportion from about 2.3%–6.7% to 25.5%–28.9% on
average.

Regarding the influences of different factors, we see that limited consideration substan-
tially suppresses the proportion of students matched to one of their preferred programs. Such
effect is larger for the Hispanic and Black students, which in part is because Asian and White
students are more likely to consider their preferred programs (Table 6 and Figure 2). We
further find that programs’ screening policies tend to match Asian and White students to
their preferred programs. This partially reflects the fact that Asian and White students tend
to have better performance in middle school (Table 1) so that they tend to be more likely
to have higher admission scores for the programs that can screen students. We also observe

51Figure B.7 presents the equivalent figure for top ten preferred programs.
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Figure 4: Proportion Matched to Top Five Preferred Programs—Decomposition
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Notes: Each bar represents the fraction of the students matched to their top five preferred programs.
The sample includes both the programs that are considered and those that are not. See Table 9 and the
discussions for the definitions of the matchings.

programs’ admissions priorities act to place Asian and White students in their preferred
programs. This may reflect that a large proportion of the admissions priorities are based
on geographic proximity. Since Asian and White students live closer to higher-performing
programs, they tend to be prioritized for admissions to these programs.

8.2 Designing Personalized School Recommendations

Although the preceding section showed that substantial welfare gains can arise when stu-
dents consider all eligible programs, it is almost impossible to achieve it in practice. As such,
this section assesses various feasible information interventions: personalized school recom-
mendations. A judicious use of both the preference and consideration estimates turns out
to be useful for designing effective interventions.

We assume that, after an intervention, students will surely consider the recommended
programs in addition to those they would have already considered based on our estimated
model. Based on the empirical findings which indicate that students are essentially truthfully
reporting among the considered programs, we impose such truthful reporting in this section
to facilitate the computation of optimal reports.52

We explore the simulated impacts of the following interventions, all of which recommend
30 eligible programs per student. The first three interventions only recommend programs

52The computation of optimal reports with subjective beliefs takes more time post-intervention due to
the enlarged consideration sets.
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Figure 5: Proportion Matched to Top Five Preferred Programs—Interventions
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Notes: Each bar represents the fraction of the students matched to their top five preferred programs.
The sample includes both the programs that are considered and those that are not. See Table 9 and the
discussions for the definitions of the matchings.

with objective admission chances exceeding 50%,53 while the last intervention (Aggressive
Skipped Best) relaxes this requirement. Best intervention proposes the top 30 programs
per student in terms of the highest predicted utilities based on the estimated parameters
and the student’s observable characteristics. Least Considered among Best intervention first
curates a list of top 60 programs based on each student’s predicted utilities. From this list,
it recommends the 30 programs with the lowest student-specific consideration probabilities
as estimated by our model. Skipped Best intervention is akin to Best intervention but skips
the programs that are already likely to be considered (those with estimated student-specific
consideration probabilities greater than 0.5) from recommendations. Aggressive Skipped Best
intervention parallels Skipped Best intervention except that, unlike the three other interven-
tions, it also recommends programs with objective admission chance below 50%.

Figure 5 summarizes the results.54 The findings suggest substantial gains from some
interventions. For instance, Aggressive Skipped Best recommendation is estimated to capture
around 20%–36% of the welfare differences between the status quo represented by Estimated
Pref & Consid + Truthful among Consid matching55 and Full Consideration + Truthful
matching.56 This is an encouraging result, recognizing that we recommended only 30 out of

53This is computed as cutoffij > Eobj [scoreij ]. The admission chance here corresponds to the assignment
chance when the student ranks the program first in the report.

54Figure B.8 discusses the impacts on the isolation indices and the proportion matched to the top ten
preferred programs. Aggressive Skipped Best intervention slightly increases isolation indices. The results on
the matching to the top ten preferred programs are qualitatively similar to the results presented here.

55This is the Change to Truthful Among Considered matching in Table 9.
56This is the Change to Full Consideration matching in Table 9. In comparison, Full Consideration above
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Table 10: Cases of Justified Envy

Asian Black Hispanic White All

Number of school programs viewed with justified envy 3.10 2.57 3.02 3.70 3.02
% students with any justified envy 76.0% 71.3% 72.9% 74.9% 73.3%
% students who view ≥ 5 programs with justified envy 25.0% 20.6% 26.1% 31.8% 25.4%

Notes: The number of school programs viewed with justified envy is the average across students. Estimated
matching (defined in Table 9) was used.

approximately 750 programs.
Notably, both preference and consideration estimates are useful for designing interven-

tions. The highest-performing intervention, Aggressive Skipped Best, employs both pref-
erence and consideration estimates. Nevertheless, the results suggest that consideration
estimates should be employed judiciously. Least Considered Among Best intervention also
uses the consideration estimates in addition to preferences but performs worse than Best
intervention, which solely uses preference estimates.

Aggressive Skipped Best performs better than its non-aggressive counterpart, but the
result presumes that students will actually consider schools with objectively low admission
chances. In practice, the actual impact of the aggressive recommendation may be better or
worse than the results presented here, depending on how optimally students respond to the
aggressively recommended programs.

The discussions here shed light on the potential role that economic models like ours can
play in shaping information intervention strategies. There is potential for enhancing these
interventions beyond our current findings. For instance, by incorporating a richer set of
explanatory variables in the model of preference and consideration, the model could predict
individual student preferences or considerations more accurately and thus capture a larger
portion of the potential welfare gains.57

8.3 Empirical Assessments of the Theory-Targeted Outcomes

Matching Stability and Justified Envy To quantify matching stability, we count the
cases of justified envy; a stable matching must not have any cases of justified envy.58 We say
that a student views an eligible program with justified envy if the student and the program

Half Chance + Truthful matching represents the counterfactual scenario where the students are considering
all eligible programs with objective admission chances exceeding 50%.

57Overfitting would typically not pose a significant issue as the set of observables and their interactions
would remain negligible compared to the number of student-program pairings.

58This is true if each program has a responsive preference over students, i.e., if there is a ranking over
individual students with which it wants to fill its seats (Roth, 1985). Programs have responsive preferences
in our setting; their rankings are determined by scoreij . Furthermore, as individual irrationality cannot arise
in our model, the matching is stable if and only if there are no cases of justified envy and therefore has no
blocking pair. Footnote 23 defines individual irrationality and blocking pairs.
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are not matched to each other, but the student prefers the program to the current assignment
and the program also prefers the student to at least one of its currently assigned student
of the same type or has an empty seat for the same type. Students’ preferences here are
determined by the simulated utilities, which are defined regardless of whether the programs
were considered or not.59

Table 10 shows that the students are 73% likely to have some school program viewed
with justified envy, thus becoming a part of a blocking pair. However, the average number
of school programs viewed with justified envy is only around three per student. Considering
the presence of over 700 programs in NYC, this number is small.

Truthful Reporting Our results indicate that, among the considered programs, the stu-
dents’ reporting strategies approximate truthful reporting. Regarding truthful reporting
among all eligible—not just considered—programs, our findings indicate that the students
rarely rank a higher-utility school lower in their reports. On the other hand, students are
dropping a significant number of unconsidered programs from their reports, which may be
due to unawareness or perceived degenerate admission chances.

As we have seen in the top panel of Table 8, students typically rank their considered pro-
grams truthfully based on their utilities, until no more programs are preferred to the outside
option or all 12 slots have been filled. Now we take a closer look at this by separately exam-
ining two potential deviations (that our model allows) from the truthful-among-considered
reporting: (1) ranking a lower-utility program above another with higher utility, which is a
weakly dominated strategy (Haeringer and Klijn, 2009); and (2) the exclusion of considered
school programs from the list due to a subjectively low (albeit nondegenerate) probability
of admission—the latter can only arise when length constraint binds.

The middle panel shows that students seldom play the first type of deviation: reversals
of the true preference ordering in the submitted report. Note that such reversals can occur
only among considered programs by design; unconsidered programs are never listed. Hence,
the middle panel’s figures can be interpreted as the proportions of non-reversals (truthful
ordering) not only among the considered programs but among all eligible programs.

The bottom panel indicates that students rarely drop their considered programs due to
low admission chances out of fear of wasting their finite number of slots in their reports. This
suggests that the current 12-slot length constraint may not be overly restrictive for students.
However, it is important to note that our model implies that unconsidered programs—those
that students are unaware of or feel out of reach—will always be dropped from reports. As
shown in Table 6, many programs are unconsidered by students. While we do not claim that

59Programs’ preferences are determined by the expected scores Eobj[scoreij ] of the applicants, which is
a function of the admissions priority groups and, if the program can screen the applicants, the expected
screening ranking given by the program for the applicant. Note that the expected value of the lottery draw
is the same for each applicant and therefore does not affect the expected scores. See Appendix E.2 for the
definition of expected scores.
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we can definitively distinguish between the two reasons for not considering a program, our
findings indicate that the latter reason is also important. For instance, we observed that
admissions priority is a key determinant in predicting whether the program is included in the
submitted report (Table 4) and that the proxy of objective admission probability positively
affects consideration chances (Table 7). In Section 7.2, we have suggested that Black and
Hispanic students seem to be perceiving the highest selectivity programs as out of reach and
therefore not considering them (see the discussions about Figure 2f), which may lead them
to drop such programs from their reports.

9 Conclusion

In this paper, we use data on school applications and admissions from the NYC DOE to
examine the impacts of its centralized public high school choice procedure for the 2016–
17 academic year. We develop and estimate a model of student application behavior that
allows for two types of optimization frictions: applicants may consider only a limited set of
school options and may have incorrect beliefs about admission chances. Latent preferences,
consideration, and beliefs are revealed through observational data. Sources of identification
include the instruments that shift consideration but are excluded from preferences, whether
and where a school program is ranked in the submitted reports, and the assumption that
students must consider highly likely high school programs near their home or middle school.
We have also developed nonparametric identification results further clarify the sources of
identification.

The empirical results show that, compared to neighborhood allocation, school choice
slightly improves racial integration and markedly boosts the number of students matched
to their preferred schools across all races. We delve deeper to discern the contributions of
different factors. We find that admissions priorities and screening policies tend to segregate
races. They make it more likely for the Asian and White students to be matched to their
preferred schools.

We also find that limited consideration results in substantial negative welfare costs, es-
pecially for Black and Hispanic students. To counter the welfare loss, we investigate the
potential impacts of personalized school recommendations based on the utilities and con-
sideration probabilities predicted through our model. We find that certain recommendation
policies can significantly counteract the negative welfare effects of limited consideration.
Our analysis further suggests that the students rank their considered programs in a largely
truthful manner.

Some key aspects highlighted in our paper align with the NYC DOE’s recent policy initia-
tives after our analysis of the academic year 2016–17. For instance, some NYC DOE schools
later adopted “Diversity in Admissions” policies, which prioritize admissions for students of
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lower socioeconomic status and English Language Learner students.60 The NYC DOE also
transitioned from a physical high school directory to an online version, aiming to facilitate
better navigation for applicants and provide more timely and accurate information.61

This paper’s limitations suggest avenues for future research. First, this paper currently
models the students as taking the school characteristics as given from the year before the
applications. Therefore, the counterfactual results presented here are best understood as
either decompositions or short-run impacts. Second, this paper treats the supply of schools
as given. However, the current variety of highly differentiated schools in NYC likely depends
on the presence of a large-scale school choice program. Exploring how school supply is
affected by the presence of school choice, and its implications for welfare and distributional
outcomes, presents a compelling research opportunity.

Appendix

A Nonparametric Identification

In this section, we provide sufficient conditions for the nonparametric identification of the
model. The main results are provided here, and Appendix D.1 provides additional results
under stronger and weaker sets of assumptions. Proofs are in Appendix D.3.

In stating the nonparametric identification results, we do not make any parametric as-
sumption about utilities, latent consideration variables, and beliefs (vi, ci, pi) ≡

(
(vij)j∈J ,

(cij)j∈J , (p
r
ij)r∈R(J ),j∈J

)
as made in Section 6. Furthermore, we do not assume that the

maximum allowed list length, denoted L, has to equal 12.
On the other hand, we do assume the following for every result. First, we assume that

beliefs are generated by students making anticipations about differences in their scores and
cutoffs, in the sense that Equation 4.2 holds. Second, we assume that perceived scores are
increasing in submitted rank as in Section 4. Third, we assume that the distribution of vi|zi
is continuous for every zi ∈ supp(zi) and that qijk ≡ Pi(d̃iffij(k) > 0) ∈ (0, 1) for every
considered schools.

To discuss the results, we define two concepts: an extreme consideration shifter excluded
from preferences and a special regressor with large support (Thompson, 1989; Lewbel, 2000).

Definition 1. Let zi ≡ (ai, z
−
i ). A J−dimensional random vector ai is called an extreme

consideration shifter excluded from preferences if vi |= ai conditional on z−i and, for
60See https://www.schools.nyc.gov/docs/default-source/default-document-library/

diversity-in-new-york-city-public-schools-english or https://www.schools.nyc.gov/
enrollment/enrollment-help/meeting-student-needs/diversity-in-admissions.

61See https://www.thecity.nyc/education/2019/5/22/21211050/city-public-high-school-
directory-takes-virtual-turn.
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all z−i in its support, there exist some known ā(z−i ) ∈ supp(ai|z−i ) such that P
(
cij > 0|aij =

āj(z
−
i )
)

= 1.

In the empirical setting, the role of an extreme consideration shifter excluded from pref-
erences is jointly played by surely considered sets and the excluded consideration shifters,
such as page rank and distance from middle school. However, they each play an imperfect
role; surely considered sets only move certain schools’ consideration probabilities for each
student, and the excluded consideration shifters do not move consideration probabilities to
1, i.e., to the extreme.62

Definition 2. A random vector zyi is called a special regressor for yi with large support
conditional on xi if yi = ỹi − zyi with ỹi |= zyi conditional on xi and supp

(
zyi |xi

)
= RK for

all xi in its support, where K is the dimension of yi.

In the empirical setting, the role of a special regressor is played jointly63 by any exogenous
(i, j)−level observables, including distance to school, and the interactions between school
characteristics and the student-level observables.64

We first establish the nonparametric identifiability of preference. Proposition A.1 shows
that the joint distribution of utilities is nonparametrically identified with a large-support
special regressor for the utilities and an extreme consideration shifter.

Proposition A.1 (Identification of preferences). Suppose that we observe the following:

(a) an extreme consideration shifter excluded from preferences, named ai, and

(b) a special regressor for vi, named zvi , with large support conditional on zi\(zvi , ai).

Then, the joint distribution of utilities conditional on observables, P
(
vi ≤ v

∣∣zi), is identified
for almost all (v, zi) ∈ supp(vi, zi).65

All proofs are in Appendix D.3. Intuitively, one can use the extreme consideration shifter
to push the consideration probability of every school to 1, in which case the probability of
listing schools becomes a sole function of the utilities. One can then use the special regressor
to “trace out” the distribution of the utilities (Agarwal and Somaini, 2018). This distribution
of the utilities is not conditioned on the value of the extreme consideration shifter, as it was

62To complement our main result, Proposition D.2 only assumes the presence of surely considered sets.
63We conjecture that results in Berry and Haile (2020) may be used to formally show how different

variables can form an index that mimics the role of a special regressor.
64Note that most results—except case (ii) of Proposition D.1, which uses identification-at-infinity

argument—can be extended to allow for limited support on the special regressor at the cost of identify-
ing the distribution of the utilities or the latent variables for consideration on limited support.

65If the large support assumptions on the special regressors are weakened, then P
(
vi ≤ v

∣∣zi) is also
identified on a limited support.
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assumed to be conditionally independent of the utilities. Note that no assumption was made
about allowed list length.

Now we turn to the identification of consideration. Proposition A.2 states that the
distribution of consideration indicators c∗ij := 1(cij > 0) can be nonparametrically identified
with a special regressor with large support, given that the distribution of utilities are already
identified (potentially through Proposition A.1). It also assumes that the allowed list length
L equals the number of schools J , i.e., an applicant can list arbitrarily many schools.66

The joint distribution of consideration indicators is point-identified if the utilities vi are
independent of latent consideration variables ci conditional on observables. It is partially
identified if the conditional independence fails.

Proposition A.2 (Identification of consideration). Suppose that P
(
vi ≤ v|zi = z

)
is iden-

tified for almost all (v, z) ∈ supp(vi, zi). Suppose that we observe a special regressor for ci,
named zci , with large support conditional on zi\zci . Suppose also that L = J . Then,

(i) if ci is independent of vi conditional on zi, the joint distribution of consideration indi-
cators conditional on observables, P

(
c∗i ≤ c∗

∣∣zi), is identified for almost all (c∗, zi) ∈
supp(c∗i , zi).67

(ii) if ci is not independent of vi conditional on zi, P
(
(c∗ij)j∈A ≤ c∗

∣∣(vij)j∈A > 0, zi
)
is

identified for almost all (c∗, zi) ∈ supp
(
(c∗ij)j∈A, zi

)
and for all A ⊆ J .

Remark. In relation to Proposition A.1, it is allowed that ai = zci or zci = zvi .68

The intuition for part (i) is as follows. Given that an applicant can write an arbitrarily
long list, whether to list a school is a function of only utilities and consideration. However,
knowing the distribution of the utilities already, the probability of schools being listed is
informative only about consideration. The special regressor then traces out the distribution
of ci, the latent consideration variable, and therefore the distribution of c∗i = 1(cij > 0).

Now we turn to the identification of the beliefs about assignment probabilities. To present
this result, we first define equivalent classes of beliefs. Two beliefs are behaviorally equivalent
if they lead to the same reporting behavior conditional on any realization of the utilities and
the consideration sets:

Definition 3. Two beliefs {prj}j∈J ,r∈R(J ) and {p
′r
j }j∈J ,r∈R(J ) are behaviorally equivalent

if for all v ∈ RJ and Ci ⊆ J , arg maxr∈R(Ci) v · pr = arg maxr∈R(Ci) v · p
′r.

where (pr) = (prj)j∈J and similar for (p′r). The notion of behavioral equivalence relates to
the notion of normalization and is distinct from observational equivalence.

Here we state the identification result on beliefs, which holds under a restricted setting.
66Proposition D.1 presents a result with length constraints with stronger data requirements.
67If the large support assumptions on the special regressors are weakened, then P

(
c∗i ≤ c∗

∣∣zi) are also
identified on a limited support.

68On the other hand, it is not possible that ai = zci = zvi .
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Proposition A.3 (Identification of beliefs). Suppose that P
(
vi ≤ v, c∗i ≤ c∗|zi = z

)
is

identified for every (v, c∗, z) ∈ supp(vi, c
∗
i , zi). Suppose that either (1) L = J = 2, or (2)

L = 1. Suppose also that beliefs are constant given observables, i.e. prij = prj(zi) ∀(i, j, r).
Then, beliefs {prj(zi)}j,r are identified up to behaviorally equivalent classes.
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B Additional Tables and Figures

Table B.1: Regression of Page Rank on School Characteristics

Dependent variable:

Page rank

Constant 52.965 (50.340)

Average grade 8 math proficiency (std.) −5.129 (3.738)

Graduation rate 41.384∗ (23.927)

Attendance rate −54.318 (60.453)

College/career rate 8.453 (21.425)

Percent of students who feel safe 16.884 (29.427)

9th grade seats −0.007 (0.015)

Percent Asian −3.557 (19.134)

Percent Black 1.555 (8.762)

Percent White −19.579 (18.452)

Observations 352
R2 0.037
F Statistic 1.456 (df = 9; 342)

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors in paren-
theses. Standardized values are indicated by (std.). College/career
rate indicates the proportion of students who graduated from high
school four years after they entered 9th grade and then enrolled in
college, a vocational program, or a public service program within
six months of graduation. Each school has equal weight regardless
of class size. The sample excludes the nine specialized high schools
and schools with missing data.
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Figure B.1: Schools Nearby, Applied to, and Matched, by Ethnicity

Notes: Nearby schools are the schools within one mile from student’s home. The applied and assigned
schools are from the main round of applications. Pct_stu_safe denotes the proportion of students who
have reported that they feel safe in the school. College_career_rate indicates the proportion of students
who graduated from high school four years after they entered 9th grade and then enrolled in college, a
vocational program, or a public service program within six months of graduation.
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Figure B.2: Preference and Consideration and School Performance
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college, a vocational program, or a public service program within six months of graduation.
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Figure B.3: Probability and Latent Values for Preference and Consideration
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Figure B.4: Characteristics of Considered Schools by Ethnicity
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Notes: College/career rate indicates the proportion of students who graduated from high school four years
after they entered 9th grade and then enrolled in college, a vocational program, or a public service program
within six months of graduation.

5



Figure B.5: Slope of Predicted Utilities against Rank in Report

0 2 4 6 8 10

rank

-25

-20

-15

-10

-5

0

A
v
e

ra
g

e
 P

re
d

ic
te

d
 U

ti
lit

y
 (

in
 m

ile
s
) Asian

Truthful Report

Subj Optimal Report

Data Report

0 2 4 6 8 10

rank

-27

-26

-25

-24

-23

-22

A
v
e

ra
g

e
 P

re
d

ic
te

d
 U

ti
lit

y
 (

in
 m

ile
s
) Black

0 2 4 6 8 10

rank

-23.5

-23

-22.5

-22

-21.5

-21

-20.5

A
v
e

ra
g

e
 P

re
d

ic
te

d
 U

ti
lit

y
 (

in
 m

ile
s
) Hispanic

0 2 4 6 8 10

rank

-20

-15

-10

-5

A
v
e

ra
g

e
 P

re
d

ic
te

d
 U

ti
lit

y
 (

in
 m

ile
s
) White

(a) Among 11-program reports

0 2 4 6 8 10

rank

-25

-20

-15

-10

-5

0

A
v
e

ra
g

e
 P

re
d

ic
te

d
 U

ti
lit

y
 (

in
 m

ile
s
) Asian

Truthful Report

Subj Optimal Report

Data Report

0 2 4 6 8 10

rank

-26

-25

-24

-23

-22

A
v
e

ra
g

e
 P

re
d

ic
te

d
 U

ti
lit

y
 (

in
 m

ile
s
) Black

0 2 4 6 8 10

rank

-24

-23

-22

-21

-20

-19

A
v
e

ra
g

e
 P

re
d

ic
te

d
 U

ti
lit

y
 (

in
 m

ile
s
) Hispanic

0 2 4 6 8 10

rank

-20

-15

-10

-5

A
v
e

ra
g

e
 P

re
d

ic
te

d
 U

ti
lit

y
 (

in
 m

ile
s
) White

(b) Among 12-program (full) reports

Notes: Average predicted utility at each rank is the within-race average of predicted utilities
(i.e., net of εvij) normalized by the coefficient on the race-specific coefficient on distance.

Figure B.6: Percent of Own Ethnicity by Matching, Model-Free
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Notes: For each ethnicity and matching, the plot represents the kernel-smoothed density of the proportion
of students with the same ethnicity in the students’ assigned programs. The kernel density estimation
uses Gaussian kernel with bandwidth 10, and is boundary corrected. See Table 9 for the definitions of
the matchings.
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Figure B.7: Proportion Matched to Top Ten Preferred Programs—Decomposition
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Notes: Each bar represents the fraction of the students matched to their top ten preferred programs.
The sample includes both the programs that are considered and those that are not. See Table 9 and the
discussions for the definitions of the matchings.

Figure B.8: Impacts of Information Interventions—Top Ten Preferred and Isolation Indices
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Notes: Each bar in (a) represents the fraction of the students matched to their top ten
preferred programs. Each bar in (b) represents isolation index of an ethnic group in a
matching.
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C Deferred Acceptance Mechanism in NYC

In the 2016–2017 school year, the DOE ran two rounds of DA assignments for the traditional
(non-specialized) high schools and one round of DA assignment for the nine specialized high
schools. In our analysis, we focus on the first (main) round for the non-specialized high schools.
This is the “main” round in the sense that approximately 85% of the final matches coincide with
the match in this round.

Using the students’ submitted rankings over the school programs and the programs’ rankings
over the students, the DA algorithm (Gale and Shapley, 1962; Abdulkadiroğlu and Sönmez, 2003)
matches the students to the school programs according to the following procedure.

• Step 1: Each applicant proposes to his first-ranked school program, if any. Each school pro-
gram sorts the proposers according to its rankings and tentatively accepts all the highest-
ranking proposers up to its capacity. It rejects any other proposers.

Then, for each k ≥ 2,

• Step k: Each applicant who was not tentatively accepted by any program in Step (k − 1)

proposes to his highest-ranked school program that has not previously rejected him, if any.
Each school program sorts the new proposers and the applicants tentatively accepted pre-
viously according to its rankings and tentatively accepts all the highest-ranking applicants
up to its capacity. All the other proposers are rejected.

The algorithm stops when there are no proposing students. Each student is assigned his final
tentative assignment. In NYC high school match, the school programs have separate seats (ca-
pacities) for students with and without disabilities. Therefore, DA algorithms are run separately
for the two student groups defined by their disabilities type.

D Identification: Details

D.1 Supplementary Results on Nonparametric Identification

Proposition D.1 (Identification of preferences and consideration with ideal data). Suppose
that we observe zi ≡ (zvi , z

c
i , z
−
i ) where (zvi , z

c
i ) is a special regressor for (vi, ci) with large support

conditional on z−i . Then,

(i) if L = J , P
(
vi ≤ v, c∗i ≤ c∗|zi = z

)
is identified for every (v, c∗, z) ∈ supp(vi, c

∗
i , zi).

(ii) if L < J , P
(
c∗i ≤ c∗|zi = z

)
is identified for every (c∗, z) ∈ supp(c∗i , zi) and P

(
vi ≤ v|zi =

z
)
is identified for every (v, z) ∈ supp(vi, zi).69

69In the case of L < J , a stronger result as in the case for L = J is available following a proof similar to
Lemma 1 of Agarwal and Somaini (2022).
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Proposition D.2 (Identification of preferences with surely considered sets). Suppose that we
observe a special regressor for vi, named zvi , with a large support conditional on z−i . Suppose
also that Si ≡ S(zi) is constant with respect to zvi . Then,

(i) if L = J , P
(
(vij)j∈S(zi) ≤ v|zi

)
is identified for all (v, zi) in its support.

(ii) if L < J , P
(
(vij)j∈A ≤ x|z

)
is bounded within an interval of width P(|ri| = L, ri ∩ A =

∅|zvi = x, z−) for all (x, z,A) such that A ⊆ S(z) with |A| ≤ L.

D.2 Lemmas

These lemmas are used in the proofs of the observations and the propositions. We define a school
to be acceptable if vij > 0 and unacceptable if vij < 0.

Lemma D.1. Consider a list r that contains an unacceptable school before an acceptable school,
and the lowest-ranked school is an acceptable school. Then, in any realization, r gives a weakly
less payoff than an alternative list that switches the lowest-ranked school unacceptable school
with the school that gives the maximum utility among the schools that follow this lowest-ranked
unacceptable school.70

Lemma D.2 (Never write an unacceptable school). For any list r that contains a considered but
unacceptable school, there is an alternative list that contains no unacceptable school and gives
strictly higher expected utility.

D.3 Proofs

Proof of Lemma D.1. By assumption, the list r has an unacceptable school before an acceptable
school. Let j− denote the lowest-ranked unacceptable school in the list. Then, by construction,
(1) there are some schools that follow j− and (2) these schools are all acceptable. Let the utility-
maximum of these school be indicated by jmax (and there is always such a school). Then, the
report r reads:

r = ( · · ·︸︷︷︸
A

, j−, · · ·︸︷︷︸
B

, jmax, · · ·︸︷︷︸
C

)

where A, B, and C denote the set of the schools in each respective position. Each of A, B, and
C may or may not be empty.

Consider an alternative list r′ that switches jmax with j−, as in the statement:

r′ = ( · · ·︸︷︷︸
A

, jmax, · · ·︸︷︷︸
B

, j−, · · ·︸︷︷︸
C

)

where the schools and the ordering within each A,B, and C is unaltered.
70The lemma is similar to what appears in the proof of Proposition 3 (ii) in He (2017).
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Representing an outcome in the relevant probability space by ω, we want to show that
r′ weakly dominates r for every ω, i.e., viµ(i;r)(ω) ≤ viµ(i;r′)(ω) for all ω, where µ(i; r) is the
assignment of i in the case that i reports r. To see this, suppose not: there is ω such that
viµ(i;r)(r;ω) > viµ(i;r′)(r

′;ω). Then, it must be that the student get rejected at all the A schools
under this ω regardless of submitting r or r′, i.e.,

π̃j(ω) < s̃coreij(r(j);ω) ≡ s̃coreij
(
r′(j);ω

)
∀j ∈ A

where r(j) and r′(j) denote the ranks of school j in r and r′, respectively. This is because
otherwise, he gets into the same school regardless of reporting r or r′ and obtains the same
utility. Note that it is impossible that he gets rejected in one report but not in the other
report—his scores for any j ∈ A under the two reports are exactly the same in the two reports
as the submitted rank of any j ∈ A in the two reports are the same. This is because score is
restricted to depend only depends on certain aspects of the report—i.e., the rank.

Also, it must be that he gets rejected by j− under r. Otherwise, conditioning on that the
student is reject by all schools in A, this is the worst that can happen to him under r or r′

because B and C can never have an unacceptable school by construction. Therefore, there is no
way that j− will strictly beat allocation under r′. Also, it must be that he gets rejected by jmax

under r′; otherwise, this is the best that can happen to him under r or r′ and so there is no way
that allocation under r will strictly beat jmax. Thus,

π̃j−(ω) < s̃coreij−
(
r(j−);ω

)
π̃jmax(ω) < s̃coreijmax

(
r′(jmax);ω

)
Similarly, it must be that he fails to make the cutoffs (in either reports) by all schools in B.

Otherwise, he gets same utility under the two reports. Note that he makes the cutoff in any of
these schools in B by submitting r iff he does so in r′; the score for the school is the same under
the two reports.

Further, it must be that he is rejected by jmax under r and j− under r′. This follows from
the assumption that perceived scores are monotonic in the submitted rank and the second step:

π̃j−(ω) < s̃coreij−
(
r(j−);ω

)
≤ s̃coreij−

(
r′(j−);ω

)
π̃jmax(ω

)
< s̃coreijmax

(
r′(jmax);ω

)
≤ s̃coreijmax

(
r(jmax);ω

)
By the same reasoning, it must be that he fails to make the cutoffs (in either reports) by all

schools in C. Otherwise, he gets same utility under the two reports. Note that he makes the
cutoffs in all of these schools in B by submitting r iff he does so in r′; the scores are the same
under the two reports.

Then, they get rejected by all schools in either of the two reports, and is placed into outside
option, in which they derive the same utility. This contradicts viµ(i;r)(r;ω) > viµ(i;r′)(r

′;ω) we
started with.
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Proof of Lemma D.2. We first show that, for any r that contains an unacceptable school, there
is an alternative list without any unacceptable school that gives weakly higher expected utility.

Suppose that r has an unacceptable school at the very end. Then, it is straightforward to
verify that dropping this school weakly increases expected utility. Repeat this process until the
last school is an acceptable school. If the list is now composed of only the acceptable schools (or
is empty), then such a list is an alternative list that we wanted to find.

If there are still some unacceptable schools in the list, then Lemma D.1 can be applied as
there is some acceptable school after any unacceptable school. We further know that the new
report found by the lemma must give weakly higher expected utility, as we’ve claimed that for
any outcome ω, the new report must give utility weakly higher than the old report.

Apply the lemma to switch the lowest-ranked unacceptable school to a lower spot in the list.
If this schools is now in the last spot, then drop this. If not, the schools that appear after this
lowest-ranked unacceptable school are all acceptable, so that we can apply the lemma again.
Continue to apply this lemma, this unacceptable the school gets moved to the last spot, in which
case we can drop the unacceptable school and obtain even (weakly) higher expected utility.

If the resulting report is now filled with only acceptable schools (or is empty), we have found
an alternative list that we wanted to find. If not, repeat the aforementioned process of moving
the lowest-ranked unacceptable school down the list and then dropping it, until there is no
unacceptable schools in the list. Every such process gives weakly higher expected utility, and
therefore the resulting list gives weakly higher expected utility.

Note that the process above now has at least one occasion where an unacceptable but con-
sidered school is dropped from the last slot. By assumption, a student believes he has positive
chance of matching to a considered school upon listing. Therefore, this drop strictly increases
his expected utility.

Proof of Observation 1. Let L denote the maximum allowed length of the list. We show that
the first statement holds.

To show that j ∈ ri implies both j ∈ Ci and vij > 0, we show the contrapositive. First, if
j /∈ Ci, j cannot be on ri by definition of consideration. Second, suppose that vij < 0 and j ∈ Ci.
By Lemma D.2, such a list with an unacceptable but considered school cannot be (subjectively)
optimal.

Suppose now that vij > 0 and j ∈ Ci, but j /∈ ri. Then one can strictly gain by adding
j on the bottom of the list, which contradicts subjective optimality of ri. The strict relation
comes from j ∈ Ci; a considered school has (subjectively) positive admission chance upon listing.
Addition of a school is possible since ri has not exhausted all the available slots.

We now show that the second statement holds. The second statement is equivalent to the
following statement: ri has exactly L schools if and only if {j ∈ J |vij > 0, j ∈ Ci} has L schools
or more.

Suppose first that |ri| = L but |{j ∈ J |vij > 0, j ∈ Ci}| < L. Because all schools in ri must
be considered by definition, there must be some schools in ri that is subjectively reachable but
is unacceptable. By Lemma D.2, such a list cannot be subjectively optimal.
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Suppose now that |{j ∈ J |vij > 0, j ∈ Ci}| ≥ L but |ri| < L. Then, there must be some
school j /∈ ri such that vij > 0 and j ∈ Ci. Adding j at the bottom of the list gives strictly
higher payoff, contradicting that ri is subjectively optimal.

Proof of Proposition A.1. I implicitly condition everything on zi\(zvi , ai). Take any zv ∈ supp(zvi )

and the according ā ≡ (ā1(z
v), · · · , āJ(zv)). Note that P(ci > 0|ā) = 1 implies P(ci > 0|zvi , ā) = 1

almost surely. Then, almost surely,

P(j /∈ ri ∀j = 1, · · · , J |zvi = zv, ai = ā)

= P(cij < 0 or vij < 0 ∀j = 1, · · · , J |zv, ā) by proof of Observation 1 with generalized L

= P(vij < 0 ∀j = 1, · · · , J |zv, ā) by P(ci > 0|zv, ā) = 1

= P(vi < 0|zv, ā)

= P(vi < 0|zv) by vi |= ai|zvi
= P(ṽi < zv). by ṽi |= zvi

As the first line is observed, the last line is identified almost surely for zv ∈ RJ by the large
support assumption on zvi . Then, by the independence assumptions on ai and zvi , P(vi >

x|zv, a) = P(vi > x|zv) = P(ṽi > x + zv). Therefore, P(vi > x|zv, a) = P(vi > x|z) is identified
for almost every (x, z) ∈ supp(vi, zi).

Proof of Proposition A.2. I will implicitly condition everything on zi\zci . I first prove (i). Take
any zc ∈ supp(zci ). Note that

P(j ∈ ri ∀j = 1, · · · , J |zci = zc)

= P(ci > 0, vi > 0|zc) by proof of Observation 1 with generalized L

= P(ci > 0|zc)P(vi > 0|zc) by ci |= vi|zci
= P(c̃i > zc)P(vi > 0|zc) by c̃i |= zci

but the first line is observed and P(vi > 0|zc) is known on almost all zc ∈ supp(zci ) by assumption.
Thus, P(c̃i > zc) is identified almost surely. By the assumptions on zci , P(ci > x|zc) = P(c̃i >

x+ zc) and thus P(ci > x|zc) is identified for almost all (x, zc) ∈ supp(ci, z
c
i ). The result follows

from the definition of c∗i , i.e. c∗ij = 1(cij > 0) for all (i, j).
The proof of (ii) follows analogously by noting that P(j ∈ ri ∀j ∈ A|zci = zc) = P((c̃ij)j∈A >

(zj)
c
j∈A)P((vij)j∈A > 0|zc) and that P(j ∈ ri ∀j ∈ A|zci = zc) is observed while P((vij)j∈A > 0|zc)

is assumed identified.

Proof of Proposition A.3. Define v∗ij = vij
(
2 · 1(vij > 0, c∗ij = 1) − 1

)
. Note first that the

assumptions imply the distribution of v∗i ≡ (vij)j∈J is known. Note also that arg maxr∈R(Ci) v ·
pr = arg maxr∈R(J ) v

∗·pr. Therefore, two beliefs p ≡ {prj}j∈J ,r∈R(J ) and p′ ≡ {p
′r
j }j∈J ,r∈R(J ) are

behaviorally equivalent if and only if for all v ∈ RJ , arg maxr∈R(J ) v · pr = arg maxr∈R(J ) v · p
′r.
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Let Cr(p) ≡ {v ∈ RJ |r = arg maxr∈R(J ) v · pr} for each r ∈ R(J ). Then, two beliefs p and p′

are behaviorally equivalent if and only if Cr(p) = Cr(p′) for all r ∈ R(J ).
Proof under assumption (1): L = J = 2.

Implicitly condition on everything on zi. From Observation 1, it is straightforward to verify
that

(
Cr(p)

)
r∈R(J )

is pinned down by a single number δ ≡ p
(1)
1 −p

(2,1)
1

p
(2)
2 −p

(1,2)
2

.This can be checked by

noting that C∅(p) = {(v1, v2) ∈ R2|v1, v2 ≤ 0}, C(1)(p) = {(v1, v2) ∈ R2|v1 ≥ 0, v2 ≤ 0},
C(2)(p) = {(v1, v2) ∈ R2|v1 ≤ 0, v2 ≥ 0}, C(1,2)(p) = {(v1, v2) ≥ 0|v2/v1 ≤ δ, }, and C(2,1)(p) =

{(v1, v2) ≥ 0|v2/v1 ≥ δ}. By assumption, everyone (in the subgroup defined by the observables)
shares the common belief p = {prj}j∈J ,r∈R(J ) and therefore P({vi2/vi1 ≥ δ}∩{vi ≥ 0}) = P(vi ∈
C(2,1)(p)) = P(ri = (2, 1)). As P(vi ≤ v) is known, the left-hand side of the equation is calculable
as a function of δ. On the other hand, the right-hand side is observable. Thus, belief is identified.
Proof under assumption (2): L = 1.

By assumption, everyone has the same belief, which I denote by p. Note that C(j)(p) =

{v ∈ RJ |j = arg maxk∈0,1,...,J p
(k)
k vk} = {v ∈ RJ |j = arg maxk∈0,1,...,J

p
(k)
k

p
(1)
1

vk} for j = 1, . . . , J and

C∅(p) = {(v1, v2) ∈ R2|v1, v2 ≤ 0}. Thus, the Cr(p)′s are completely characterized by the vector
p̃ ≡ (p̃2, · · · , p̃J) ≡ (p2p1 , . . . ,

pJ
p1

). Therefore, belief is identified if p̃ is identified.
I now claim that one can use Corollary 1 of Berry et al. (2013), denoted BGH. In their

notation, x = p̃, X ∗ = X = RJ−1++ , and σ(p̃) = (σ2(p̃), · · · , σJ(p̃)) : X ⊆ RJ−1 → RJ−1 where
σj(p̃) = P(vi∈C(j)(p̃))∑J

k=1 P(vi∈C(k)(p̃))
for j = 1, . . . , J . Note that the school j = 1 now plays the role of

BGH’s “outside option” (which is denoted j = 0 in their notation).71 To see that the corollary
applies, note first that X is a Cartesian product. Moreover, σj(p̃) is strictly decreasing in p̃k
for all j = {1, . . . , J} and for all k 6= 1, j, as (1)

∑J
k=1 P(vi ∈ C(k)(p̃)) is constant over p̃, and

(2) P(vi ∈ C(j)(p̃)) is strictly decreasing because vi has full support. Thus, BGH’s Corollary 1
applies and σ(p̃) is injective.

Proof of Proposition D.1 . I first prove case (i). Take any z ≡ (zv, zc, z−) such that zv ∈ RJ ,
zc ∈ RJ , and z− ∈ supp(z−i ). Then,

P
(
j ∈ ri ∀j = 1, · · · , J |zvi = zv, zci = zc, z−i = z−

)
= P(ṽi − zv > 0, c̃i − zc > 0|zv, zc, z−)

= P(ṽi > zv, c̃i > zc|z−)

= P(−ṽi < −zv,−c̃i < −zc|z−)

and since the first expression is observed for any zv ∈ RJ , zc ∈ RJ , and z− ∈ supp
(
z−i
)
, the

last expression is identified for any such (zv, zc, z−). Thus, the joint distribution of (−ṽi,−c̃i)
conditional on z−i , and therefore the joint distribution of (ṽi, c̃i) conditional on z−i , is identified on
the support of z−i . As vi = ṽi−zvi and ci = c̃i−zci with (ṽi, c̃i) |= (zvi , zci )|z−i and zi ≡ (zvi , z

c
i , z
−
i ) is

observed, the joint distribution of (vi, ci) conditional on zi is identified for every zi in its support.

71The outside option j = 0 as considered in my model is left out of the discussion here because their
choice probability does not change according to p.
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To show the first part of case (ii), note that

P
(
ri = ∅|zvi = zv, zci = zc, z−i = z−

)
= P(vij ≤ 0 or cij ≤ 0 ∀j ∈ J |zv, zc, z−)

= P(ṽij ≤ zvij or c̃ij < zcij ∀j ∈ J |z−)

Now, send all of the elements in zc to negative infinity. By the dominated convergence theorem,
the last expression converges to P(ṽij ≤ zvij ∀j ∈ J |z−). Note that zvi is a special regressor for vi
with a large support. Use the special regressor similarly as before to identify the distribution of
vi. The second part of case (ii) follows similarly by sending all of the elements in zv to negative
infinity.

Proof of Proposition D.2. Proof of part (i) follows by noting that

P(ri includes no school among S(zi) |zi = z)

= P((vij)j∈S(zi) ≤ 0|zi = z)

= P(ṽij ≤ zvij ∀j ∈ S(zi)|zvi = zv, z−i = z−)

= P((ṽij)j∈S(zi) ≤ (zvj )j∈S(zi)|z
−
i = z−)

and using the independence of the special regressor to recover the distribution of (vij)j∈S(zi)|zi.
I now show part (ii). Take zi = z andA ⊆ S(z) with |A| ≤ L. Implicitly condition everything

on z. Note that for any two events A and B, P(A|B)P(B) ≤ P(A) ≤ P(A|B)P(B) + P(Bc).
Consider the events A = {vij ≤ 0 ∀j ∈ A} and B = {|ri| = L, ri ∩A = ∅}c. One can verify that
P(A|B) = P(j /∈ ri ∀j ∈ A|B) using Observation 2. Further, note that P(j /∈ ri ∀j ∈ A|B) and
P(B) is observable. Thus, P(A) ≡ P(vij ≤ 0 ∀j ∈ A) = P(ṽij ≤ zvij ∀j ∈ A) is bounded within
an interval of length P(Bc). One can then use the special regressor similarly as before to bound
P
(
(vij)j∈A ≤ x|z

)
.

E Data Appendix

E.1 Eligibility and Priority Groups

Eligibility and priority groups for a program are recorded only for the students who have written
down the program in their reports. For consistency, we use the constructed eligibilities and
priorities even for those student-school pairs whose actual eligibilities and priorities are observed.
While the high school directory offers explicit explanations of criteria for eligibility and priority
groups, there are instances where determining if a student meets these criteria based on available
data is not feasible. In such cases, approximations are made.

There are several priority and eligibility criteria that we ignore and assume that every ap-
plicant satisfies them. These criteria are whether a student attended an information session,
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whether a student lived in the US for a certain period of time, or whether a student knows or is
interested in learning American Sign Language.

There are also criteria that we seek to approximate. Some criteria assess whether a student
attended specific middle school programs, which is not observed in the data; on the other hand,
we observe the middle school (which may contain multiple programs) that each student attends.
In these cases, we code the student as satisfying the criteria if the student attends the middle
school that contains the program. Such criteria involves either Dual Language Spanish middle
school programs or Transitional Bilingual Education Spanish middle school programs.

Some criteria concern granting eligibility or priority to students living in “geographical catch-
ment areas.” We approximate these catchment areas based on the addresses (specifically, ad-
dresses grouped into school zones) of the students who have applied to these programs and
were determined by NYC to be eligible (or ineligible). We apply a similar approach for criteria
involving “Brooklyn Area A” and “Brooklyn Area B”.

There are also criteria that pertain to students’ proficiency in English. While some of these
criteria, such as requiring the students to be English Language Learners, are both well-defined
and is clearly determinable from the dataset, there are other proficiency criteria that are not
directly determinable from data. We use the English Language Learner status to approximate
the satisfaction of such criteria.

E.2 Scores and Cutoffs

As in the main text, we model student i’s belief regarding program72 j written at the k-th slot
of his report as qijk = Pi

(
cutoffj − Eobj[scoreij ] + εbijk > 0

)
where Pi is the probability measure

of εbijk. The belief consists of two parts, namely the objective difference cutoffj − Eobj[scoreij ]
and the subjective assessment εbijk. In this section we explain the empirical specification of the
objective difference, starting with cutoffj .

We call a priority group the threshold priority group if the subsequent priority groups have
no accepted students. We say student i is contemplated by program j if i is not assigned to a
program listed strictly above j in his report ri. With these two definitions, we set cutoffj as
the summation of the threshold priority group number and the proportion of accepted students
among those who are contemplated by j, within the threshold priority group.73

Now we turn to Eobj[scoreij ]. First, because admissions priority groups are lexicographically
more important than the screening outcomes and lotteries (both of which we call tiebreakers),
we model scoreij = priorityGroupij +quantileij where priorityGroupij ∈ {1, . . . , 6} is the admissions
priority groups and quantileij ∈ [0, 1] is the quantile of the tiebreaker among the applicants who
were contemplated by program j. The second term quantileij is inherently unobservable (e.g.,
due to a tiebreaking lottery) from the student’s perspective, so he forms an expectation to build

72The subscript j denotes pairs of disability type and program, but here we simply call them programs
for the sake of simplicity.

73By this definition, the cutoff is set as (the last priority group +1) if a program is matched to fewer
students than its capacity.
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his belief. Therefore we specify the (objectively) expected score Eobj[scoreij ] as

Eobj[scoreij ] = priorityGroupij + Eobj[quantileij ].

We detail the construction of Eobj[quantileij ] momentarily. The uncertainty from the discrepancy
between the true score and the objective expectation thereof is subsumed into νij .

We do not observe priorityGroupij for all (i, j) pairs, and hence we impute their values. As
explained in Section E.1, priorityGroupij is not observed directly from the dataset if i does not
apply to j. We construct priorityGroupij based on the priority criteria stated in the school
directory which is publicly available. For example, if j states that the program assigns priority
group 1 to any students living in Manhattan, and i indeed lives in Manhattan, then we let
priorityGroupij = 1.

Neither is Eobj[quantileij ] observed for every (i, j) pairs. In this regard, programs can be di-
vided into three categories based on their tie-breaking methods: lottery-based programs, screen-
based programs, and Educational Option programs. For lottery-based programs,74 the tiebreaker
is a single lottery, which we do not observe. For these programs, we assign Eobj[quantileij ] = 0.5,
the mean of the within-priority group quantile generated by a lottery. For screen-based pro-
grams,75 the tiebreaker is the screening priority and we observe how programs ranked a subset of
the applicants by their screening policies.76 Educational Option programs use both the lottery
and screening priority which we detail later.

In order to evaluate Eobj[quantileij ] for each possible (i, j) pair when j is a screen-based or
an Educational Option program, an ideal data would be one in which we observe how a program
ranks all the students. However, this is not the case for our data in two senses. First, if a student
is not contemplated by a program, the program does not rank the student. Second, even if they
are contemplated by the program, they still may not be ranked.

To address this, we predict the counterfactual screening priority ranking as follows. We first
run the following OLS regression using (i, j) pairs for which i is ranked by j:

rawRankij = βjXi + δj,priorityGroupij + εij

where rawRankij is the ranking of i evaluated by j in the data, and δj,priorityGroupij are program
and priority group fixed effects. The covariates Xi include English and math test scores, the
number of days i has been absent, and the number of days i has been late.

We then use the estimate β̂j to predict the quantile of i within her priority group among

74Lottery-based programs are those with admission methods: Unscreened, Limited Unscreened, Zoned
Priority, Zoned Guarantee, and For Continuing 8th Graders programs.

75Screen-based programs are those with admission the following admission methods: Audition, Screened,
Screened: Language, and Screened: Language & Academics.

76We observe some violations in the data. 0.35% of screen-based programs do not assign any tiebreakers
to their applicants, and among those that do, 5.32% assign the same tiebreaking number if any.
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those who were contemplated, according to the data, by j. Specifically,

Eobj[quantileij ] =
1

|Cij |
∑
i′∈Cij

1(β̂jXi′ ≤ β̂jXi)

where Cij = {i′ : priorityGroupi′j = priorityGroupij , i′ is contemplated by j according to the data}.
Educational Option programs, according to the NYC high school directory, “admit students

who have high, middle, and low reading levels. Half of the students in each reading level group
will be selected based on their rankings from the school using multiple criteria. The other half
will be selected randomly from the remaining applicants.” Following Che and Tercieux (2019),
we create six “virtual subprograms” for each Educational Option program, namely HR, HS, MR,
MS, LR, and LS, where H, M, and L indicate high, middle, and low reading levels respectively,
while R and S indicate random and select.

We let subprograms HR and HS share the same cutoff level cutoffj(H), which is computed
as above but conditional on the reading level being high; i.e., cutoffj(H) is the summation of the
threshold priority group (which is the priority group whose subsequent priority groups have no
accepted students with high reading level) and the proportion of accepted students among those
who are contemplated by j and have high reading level, within the threshold priority group.

We let Eobj[quantileij(HR)] = 0.5 as above (since HR is a random subprogram). We calculate
Eobj[quantileij(HS)] in a similar manner to screen-based programs. This is less straightforward,
however, because we do not observe which students are “contemplated” by HS (even though we
do observe the students who are contemplated by j as a whole). For this, we run deferred-
acceptance algorithm to simulate which students are contemplated at the subprogram level.
This requires students to rank the virtual subprograms, for which we again follow Che and
Tercieux (2019); a student who applies to an Educational Option program j is assumed to
rank the subprograms according to the order HR, HS, MR, MS, LR, and LS. The simulation
matches 73.4% of the students who were matched to an Educational Option program (in the
data) to the same program. For subprogram matching, we use these correct matches only. Other
subprograms, MR, MS, LR, and LS, are treated analogously.

In the end, as we need i’s belief on the Educational Option program rather than on its sub-
programs, we use the maximum77 of the objective differences of the subprograms to approximate
the belief on the program, i.e.,

qijk = Pi
(

max
s∈S

[cutoffj − Eobj[scoreij(s)]] + εbijk > 0
)

where S = {HR,HS, . . . , LS} is the set of subprograms of j.
In the equation determining cij , a proxy for objective chance of admission enters the equation:

the difference in objective expected scores and cutoffs. They correspond to cutoffj−Eobj[scoreij ].

77We take maximum, instead of, say, average, to reflect that a student is accepted by an Educational
Option program if the student is accepted by any of its subprograms.
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E.3 Distances

To calculate distance measures, we rely on the centroid of the student’s census block and the
precise locations of the schools. For this computation, we employ the Haversine formula, a
method used in navigation providing great-circle distances between two points on a sphere from
their longitudes and latitudes. Distances are expressed in miles.

E.4 Program Admission Methods and Interest Area

The following admission methods, as defined by NYC DOE, use lottery to break the ties: “Un-
screened", “Limited Unscreened", “Zoned Priority", “Zoned Guarantee", and “For Continuing 8th
Graders". The following admission methods use screening policies to break the ties: “Audition”,
“Screened”, “Screened: Language”, and “Screened: Language & Academics”. “Educational Op-
tion” programs use both screening and lotteries to break the ties. Such programs were counted
towards the calculation of proportion of programs that uses screening in Table 2.

In terms of programs’ interest areas, Table 2 and in our estimation of the model of application
behavior (Table 6) defines some programs to be of Arts programs or STEM programs. Arts
programs are the programs that have one of “Performing Arts”, “Visual Art & Design”, and
“Performing Arts/Visual Art & Design” as their interest area as defined by NYC DOE. Similarly,
STEM programs are those that have “Computer Science & Technology”, “Engineering”, and
“Science & Math” as their interest area.

E.5 Construction of Figures and Tables

Table 1 presents the variable State Reading Category, which indicates students’ reading perfor-
mance on the New York State English Language Arts (ELA) test scores, whenever available.
The “Low” category indicates students who scored in the bottom 16%, the “Middle” category
indicates students who scored in the middle 68%, and the “High” category represents students
who scored in the top 16%. For non-public school students, the reading category is calculated
based on another standardized assessment, which is then used for the purposes of categorization
for admissions criteria for Educational Option programs.

Tables 3, 4, and 5 control for the following variables. Student-specific variables are ethnicity,
sex, subsidized lunch, math score, disability status, and borough. Program- or school-specific
variables include page rank (for Table 5), coed, school borough, graduation rate, the percentage
of students who enroll in college or career programs, attendance rate, admissions method, interest
area, the percentage of students who feel safe on the premises, and (log of) the number of enrolled
students. Match-specific variables are the priority group (for Table 3 and 5), the interaction
between sex and coed, whether the student’s borough matches the school’s borough, whether
the student’s feeder school is close (less than 0.5 miles) to the high school, whether the high
school is the feeder school, the distance (between the student and the school), its square, and
the student’s own ethnicity interacted with the percentages of each ethnicity group in the school.

In Table 9, Panel A discusses two counterfactual matchings without school choice: Random
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matching and Neighborhood matching. Random matching randomly allocates the students to
the programs respecting the capacity constraints of the programs. Neighborhood matching ap-
proximately minimizes the total distance traveled by the students to the programs subject to
the capacity constraints.78

Other matchings (Panel B) in Table 9 reflect different versions of school choice. Matchings
in Panel B.a. represent the status-quo school choice. Actual matching is the actual school choice
matching in 2017 from the main round of DA. Estimated matching is the result from a simulated
DA using the estimated model of student behavior, coupled with the approximated admission
policies by the programs.79

The matchings in Panel B.b shut off different factors’ influences one by one. Change to
Truthful among Considered is the same as the Estimated matching except that students truth-
fully report their considered programs in the order of their preferences until they run out of the
programs that are preferred to the outside option or reach the twelve-program threshold. Note
that the students may still drop programs they are unaware of or they feel out of reach. Change
to Full Consideration matching then further turns off limited consideration by assuming that
students consider every eligible program. Change to Random Screening matching turns off the
schools’ screening policies by forcing the programs endowed with screening ability to randomly
screen students. Change to No Admissions Priorities matching then removes the admissions pri-
ority groups. Note that this matching purely reflects student preferences without the influences
of limited consideration, non-truthtelling behavior, nor the schools’ admissions priorities and
screening policies. In this regard, an alternative name for the matching is Student-Preferences-
Only Choice.

E.6 Missing School Characteristics

The dataset had some instances of missing values for the following school characteristics: grad-
uation rate, college/career rate, and percentage of students feeling safe. To perform our
counterfactual analysis, we needed to predict students’ utilities, consideration probabilities, and
beliefs for every program. Therefore, we took the approach of imputing the missing values. We
used the predicted values from the ordinary least squares regressions of each of these variables
on the following characteristics: attendance rate, average grade 8 math proficiency, percentage
of students eligible for Human Resources Administration, enrollment size, and the percentage of
White, Black, and Asian students. These regressions utilized only the non-missing observations.

78Refer to Appendix G.2 for approximation details.
79Refer to Appendix E for details on the estimation of the screening policies and the approximation of

the priority groups. See Appendix G.3 for details on our implementation of Deferred Acceptance algorithm.
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F Estimation: Details

F.1 Likelihood of Inclusion

Here we derive the formula of likelihoods of school inclusions and discuss why the true parameters
maximize the likelihoods. The likelihoods that we consider are not standard in the sense that (1)
they select students with sij := 1(|ri\{j}| < 11) = 1 and (2) one of the likelihoods is weighted.
We show that the true parameters maximize the likelihoods despite being non-standard.

We first derive the formula of log-likelihood of inclusion of school j in the report of applicant
i. The log-likelihood reflects the identifying information in Observations 1 and 2. It selects
individuals with sij = 1 (rather than those with |ri| < 12) to resolve selection issues explained
in Section 7.1; Lemma F.1 shows that, given (εvij , ε

c
ij)j∈J is i.i.d across j, |ri\{j}| < 11 is

independent of (εvij , ε
c
ij) conditional on observables (xj , zij), where xj is the union of all variables

in xvj and xcj (as defined in Section 6), and similarly for zij . Let ιij := 1(j ∈ ri) denote the random
variable indicating whether school j was included in the report ri. Let wij := 1(vij > 0)1(cij > 0)

and note that wij = ιij whenever sij = 1 following Observation 1. Let fw|z,s(·|z′, s′; θ) denote
the density of wij given zij = z′, sij = s′, and θ. Similarly define fι|z,s(·|z′, s′; θ) and fw|z(·|z′; θ).
We treat (xj)j as nonrandom in this subsection. Then,

log ΠiΠj:sij=1fι|z,s(ιij |zij , 1; θ) (F.1)

= log ΠiΠj:sij=1fw|z,s(wij |zij , 1; θ)

= log ΠiΠj:sij=1fw|z(wij |zij ; θ)

= log ΠiΠj:sij=1,j /∈Si
(
1− P(vij > 0|zij ; θv)P(cij > 0|zij ; θ)

)1−wij · · ·(
P(vij > 0|zij ; θv)P(cij > 0|zij ; θc)

)wij · · ·

Πj:j∈Si
(
1− P(vij > 0|zij ; θv)

)1−wijP(vij > 0|zij ; θv)wij

=
∑
i

[ ∑
j:sij=1,j /∈Si

[(
1− wij

)
log
(
1− Φ(−ψvij)Φ(−ψcij)

)
+ wij log

(
Φ(−ψvij)Φ(−ψcij)

)]
+

∑
j:sij=1,j∈Si

[
(1− wij) log

(
Φ(−ψvij)

)
+ wij log

(
Φ(−ψvij)

)]]

where Φ̄(·) := 1−Φ(·), ψvij := vij− εvij , ψcij := cij− εcij , θv denotes the preference parameters, and
θc denotes the consideration parameters. For notational convenience, the dependence of ψvij on
θv and the dependence of ψcij on θc are made implicit. The second equality comes from sij = 1

being independent of (εvij , ε
c
ij) and therefore also of (vij , cij) conditional on observables. Note

that the second summation in the last expression, which consists only of the programs that are
surely considered, exclusively reflects the variation in Observation 2 and therefore is a function
solely of the preference parameters. It is also possible to estimate preference parameters using
this part of the partial likelihood. The summary of the results are given in Figure B.3.

We now show that the population version of the log-likelihood is maximized by the true
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parameters θ0. Define

Q(θ) := Eθ0
∑
j:sij=1

log fι|z,s(ιij |zij , 1; θ) ≡ Eθ0
∑
j:sij=1

log fw|z(wij |zij ; θ)

where both wij and zij are random variables. This is the population version of the log-likelihood
(Equation F.1) in the sense that plimn→∞ n

−1 log ΠiΠj:sij=1fι|z,s(ιij |zij , 1; θ) = Q(θ) where n
denotes the number of students in the sample and with the understanding that in the left-hand
side (ιij , zij) are realized values.

Now we show Q(θ0) ≥ Q(θ) for all θ. Note that

Q(θ)−Q(θ0) =
∑
j

Eθ0

[
sij log

fw|z(wij |zij ; θ)
fw|z(wij |zij ; θ0)

]
=
∑
j

Eθ0

[
sijEθ0

[
log

fw|z(wij |zij ; θ)
fw|z(wij |zij ; θ0)

∣∣∣sij , zij]]

≤
∑
j

Eθ0

[
sij logEθ0

[ fw|z(wij |zij ; θ)
fw|z(wij |zij ; θ0)

∣∣∣sij , zij]]

=
∑
j

Eθ0

[
sij logEθ0

[ fw|z(wij |zij ; θ)
fw|z(wij |zij ; θ0)

∣∣∣zij]] = 0

where the inequality holds by Jensen’s inequality, the penultimate inequality holds from (cij , vij) |= sij |zij
and therefore wij := 1(cij > 0)1(vij > 0) |= sij |zij , and the last equality holds from

Eθ0

[ fw|z(wij |zij ; θ)
fw|z(wij |zij ; θ0)

∣∣∣zij] =
fw|z(0|zij ; θ)
fw|z(0|zij ; θ0)

fw|z(0|zij ; θ0) +
fw|z(1|zij ; θ)
fw|z(1|zij ; θ0)

fw|z(1|zij ; θ0) = 1.

As the sample size of (i, j) pairs such that i surely considers j is small relatively those that
do not have the sure-consideration relationship, we weight higher the sure-consideration pairs.
The weighted log-likelihood is

ωNSC
∑
i

∑
j:sij=1,j /∈Si

[
(1− 1(j ∈ ri)) log

(
1− Φ(−ψvij)Φ(−ψcij)

)
+ 1(j ∈ ri) log

(
Φ(−ψvij)Φ(−ψcij)

)]

+ ωSC
∑
i

∑
j:sij=1,j∈Si

[
(1− 1(j ∈ ri)) log

(
Φ(−ψvij)

)
+ 1(j ∈ ri) log

(
Φ(−ψvij)

)]

for some weights ωNSC and ωSC such that ωNSC
∑

j /∈Si sij + wSC
∑

j∈Si sij =
∑

j∈J sij . That
is, the schools that are not surely considered are weighted by ωNSC and those that are surely
considered are weighted by ωSC.

The true parameters maximize the population version of the weighted likelihood. To see
this, it suffices to show that the true preference parameters maximize the second term above (as
ωSC > ωNSC and the weighted likelihood can be expressed as the sum of unweighted likelihood
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multiplied by ωNSC and the second term weighted by ωSC − ωNSC). But the sure-consideration
event j ∈ Si is determined by the observables and is independent of (cij , vij) conditional on zij .
Then, the Jensen’s inequality above holds with the sij replaced as s̃ij := sij1(j ∈ Si).

F.2 Simulated Ordering Moments

In this section, we denote the union of variables in (xvj , x
c
j , z

v
ij , z

c
ij), as defined in the empirical

specification (Section 6), as simply zij for notational convenience. For any f : R → Rm,

0 = E
[
f(ri)− E[f(ri)|zi]

∣∣zi] = E
[
f(ri)− E[f(r(zi, ei; θ0))|zi]

∣∣zi]
where ei denotes the vector of unobservables (εvi , ε

c
i , ηi), θ denotes the parameter vector, θ0

denotes the true parameter vector, and r(zi, ei; θ) denotes the subjectively optimal report under
(zi, ei, θ) which is uniquely defined with probability 1. Section G.1 describes the procedure for
simulating r(zi, ei; θ). It follows that

E

[(
f(ri)− E

[
f
(
r(zi, ei; θ0)

)∣∣zi])h(zi)

]
= E

[
E
[
f(ri)− E

[
f
(
r(zi, ei; θ0)

)∣∣zi]∣∣∣zi]h(zi)

]
= 0

where h(zi) may be a m−dimensional vector.
The sample equivalent of this condition is

1

I

∑
i

(
f(ri)− Esim[f(r(zi, ei; θ0))∣∣zi])h(zi) = 0 (F.2)

where in the brute-force version of simulation Esim
[
f
(
r(zi, ei; θ0)

)∣∣zi] = 1
S

∑
s f
(
r(zi, e

s
i ; θ0)

)
where the distribution of esi is completely governed by θ0 and not by zi due to independence.

The simulated ordering moments gives information about how individuals order the schools:

E
[ 1

J

∑
j

(
1(j ∈ rki )− P

(
j ∈ rk(zi, ei; θ)

)
hj(zi)

]
= 0 ∀k = 1, . . . , 12

where rki is represents the report ri truncated up to the kth slot, rk(·) is the equivalent for the
simulated report, and the set inclusion notation is used towards rki and rk(·) with a slight abuse.
The condition uses f(ri) = 1

J

(
1(j ∈ rki )

)
j∈J in the notation of Equation F.2. The moment

condition is implemented by

1

IJ

∑
i

∑
j

(
1(j ∈ rki )− Esim[1(j ∈ rk(zi, ei; θ))∣∣zi])hj(zi)

with S = 1. Using one simulation draw per observation is justified as the simulator Esim
[
1
(
j ∈

rk(zi, ei; θ)
)∣∣zi] is unbiased for E[1(j ∈ rki )] and therefore rely on the law of large numbers

with respect to the observations to control for simulation error (McFadden, 1989). And we use
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h(zi) =
(
1, zij , (zij − z̄i)2, cutoffij − Eobj[scoreij ]

)
j∈J where we remind the readers that we are

using a shorthand expression: zij includes all variables in (xvj , x
c
j , z

v
ij , z

c
ij).

Potentially because of non-smoothness of the criterion function with respect to the parameters
due to simulations, in the second stage of estimation—where we use these ordering moments
to recover the belief parameters—the traditional gradient-based algorithms or Knelder-Mead
algorithms did not work well to find the minimizer. We instead relied on grid search on the
two-dimensional grid (per each ethnicity) to find the minimizer.

F.3 Lemmas

Lemma F.1. The event |ri \ {j}| < 11 is independent of (εcij , ε
v
ij) conditional on observables.

Proof. Fix the observables (x, z). We shall show that the event |ri \ {j}| < 11 is the same as
the event

∑
j′ 6=j 1{cij′ > 0, vij′ > 0} < 11. Being determined by only (εcij′ , ε

v
ij′)j′ 6=j , the latter is

independent of (εcij , ε
v
ij) as desired.

Note that

|ri \ {j}| < 11 iff |ri \ {j}| < 11 and |ri| < 12

iff
∑
j′ 6=j

1{cij′ > 0, vij′ > 0} < 11 and |ri| < 12

iff
∑
j′ 6=j

1{cij′ > 0, vij′ > 0} < 11.

The second equivalence holds due to the first statement of Observation 1 (since |ri| < 12). For
the last equivalence, “only if” holds trivially. The “if” holds due to the second statement of
Observation 1.

G Simulations

G.1 Simulating Subjectively Optimal Reports

Here we describe the procedure for calculating the subjectively optimal reports:

r(zi, ei, θ) = arg max
r∈R(Ci)

J∑
j=0

prijvij (G.1)

where the distribution of (Ci, vij , prij)ij depends on θ. We ignore ties in optimal reports as they
occur with probability zero. Note that arg maxr∈R(Ci)

∑J
j=0 p

r
ijvij = arg maxr∈R(J+

i )

∑J
j=0 p

r
ijvij

where J +
i = {j ∈ Ci|vij > 0} is the set of schools that are considered by i and are preferred to

the outside option. The equality holds since students will never wish to list any school outside
J +
i .
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The optimization problem is difficult to solve since the size of a choice set, even after being
reduced to R(J +

i ), can be large. For instance, with |J +
i | = 20, the choice set R(J +

i ) is all
possible ordered lists using the schools in J +

i which has as many as 20!/(20− 12)! ' 6.03 ∗ 1013

elements. As in Calsamiglia et al. (2020), to make this problem solvable through backward
induction, we represent this problem as what resembles a finite-horizon dynamic programming
problem, where a “period” is a slot in the list and a state is the set of schools already listed.

Let jk represent the school listed in the kth spot. Note prij = Πk−1
l=1 (1 − qijrl l)qijk. Let

K = min{12, |J +
i |}, which represents the last slot (or period) that the student optimally fills in.

Each student solves the following problem:

arg max
r∈R(J+

i )

J∑
j=0

prijvij

= max
{j1,··· ,jK}⊂J+

i

qij11vij1 + (1− qij11)
(
qij22vij2 + · · ·+ (1− qij22) · · · (1− qij1111)qijKvijK

)
.

We solve the problem backwards from the last school the student puts in the list. Let Jk =

{j1, · · · , jk}. Let
V i
K({j1, · · · , jK−1}) = max

j∈J+
i \JK−1

qijKvij

and, for 1 ≤ k < K, let

V i
k ({j1, · · · , jk−1}) = max

j∈J+
i \Jk−1

qijkvij + (1− qijk)V i
k+1({j1, · · · , jk−1, j}).

Then,

V i
1 = max

j∈J+
i

qij1vij + (1− qij1)V i
2 ({j}) = max

r∈R(J+
i )

J∑
j=0

prijvij ,

which shows that the original problem may be solved via the dynamic formulation.

G.2 Simulation of Neighborhood Matching

Finding the optimal matching that minimizes the sum of distance-to-school is an integer lin-
ear programming problem, and its computation time increases nonlinearly with the number of
students. To reduce the computation time, we adopt an iterative approach to approximate the
total distance minimization. In the initial step, we randomly select 10,000 students and match
them to programs to minimize the sum of distance traveled, with program capacities adjusted
proportionally. We then iterate this procedure, considering the remaining students and program
seats, until all students are matched.
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G.3 Simulation of Deferred Acceptance Algorithm

Capacities The simulation exercises require program capacities (for each disability type) as
one of their inputs, which we take from 2018 High School Directory because it states the capacities
for the year 2017. For zoned programs and feeder-only programs, however, the directory does not
state the capacities. In these cases, we use the number of students who are in the corresponding
school zones and who are from the corresponding feeder schools, respectively. For programs that
appear in 2017 High School Directory but not in 2018, we use the capacities as stated in 2017
High School Directory.

In the data, students are often matched beyond the stated capacities; for example, 51.34% of
the programs admitted more students (13.86 students on average) in round 1 than their capacity
as stated in 2018 High School Directory. Therefore we take the number of actually matched
students as the program capacity if it is greater than what we have obtained in the previous
paragraph.

We have complete non-missing data only for the students who are attending NYC public
schools and therefore have used only such students for estimation. In the simulation of DA, we
also use only these students, which are 92.2% of the total students. To account for this, we
reduce the capacities of programs proportionately to be 92.2% of their estimated capacities.

Finally, for Educational Option programs, the capacity is divided into six virtual subpro-
grams: 50%× 16% of the total capacity goes to each of HR, HS, LR, and LS subprograms, and
50%× 68% goes to each of MR and MS subprograms.

Preferences of Students and Rankings by Programs Other inputs of simulation include
preferences of students and programs. The preferences of students are formed as described
in Section 4, given parameter values and policies such as information interventions. A slight
complication involves Educational Option programs; for those, we follow Che and Tercieux
(2019) and let a student, whenever she includes an Education Option program in her report,
rank its subprograms in the order of HR, HS, MR, MS, LR, and LS.

For simulation, we need each program to rank all the counterfactual applicants for the pro-
gram, which does not necessarily coincide with the set of its actual applicants in our data.
Because of this, we let the programs rank the students according to the objective expected score
Eobj[scoreij ], defined in Section 6, instead of the actual ranking reported by the program in the
data; the former is defined for each pair of student i and program j, whereas the latter is avail-
able only when i is an actual applicant for j in the data. In case of lottery-based programs or
ties in the objective expected scores, we use individual-specific lottery number to break ties.
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